|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
/ n6 i9 _2 I6 D* Z1 {7 }% j9 W
上篇我们讨论了:MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)
) b5 q) s- V) [) P# C
) T% I4 X1 Y' }0 D7 A, t, ^5 _可是还是觉得不过瘾,还有下面的情况需要比对。于是就有了这篇。
4 R' v' @" V- m$ R; \4 _ f% N( s4 c: l9 @$ c. M
案例:
% _- V8 `2 \* q
g3 f- n) \7 m1 D
* F6 v% R. `3 b
( r6 V0 m* [8 F/ d想要基于有限样本数来确定他的频谱。
; N; t* M8 q# ?' W1 u1 o6 c% n' s
下面我们分如下几种情况来分别讨论:
0 q9 a9 h. P. F% ?3 g% m6 b8 R) m
& v8 |6 t# Q4 aa. 求出并画出
的DTFT;
?; j9 v" A4 Z: H
' a, W8 C" L! |/ b, {( D; G* gb. 求出并画出
的DTFT;8 e( f5 c- J3 w% ^: K7 j3 |
& v0 D$ k' A, S3 M$ k
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,2,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,2,2);
- % stem(w1/pi,magY1);
- % title('DFT of x(n) in [0,9]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- % hold on
- plot(w/pi,magX);
- % hold off
- subplot(2,2,3)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,2,4);
- % stem(w1/pi,magXk);
- % title('DFT of x(n) in [0,99]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
& T- q9 A. r# H- {
- M9 b9 |1 O- V. M% b: K8 v5 F$ t9 B9 z: S6 v0 @
; M4 u% A# }. b( T. v& s) K- w
+ J! K. j4 H# |9 y! R- Z) Z
可见,b问这种情况,拥有x(n)的更多数据,所以得到的DTFT更加的准确,正如我们所料,频谱在w = 0.48pi以及0.52pi处取得峰值。而a问中的图就看不出这种关系,因为获得序列数据太少,已经严重影响到了频谱的形状。) d6 E" r# F! X5 A( i
! }2 e _5 P- {
2 \0 E0 c6 t0 t8 [% _1 w: k' w
, Y: _/ z& h- o* |- d' t: A( q$ Y2 g) l( q
3 l# Y" _# ~# d* x& U
|
|