|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
U0 e5 [/ S5 K* A7 K# C上篇我们讨论了:MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)
7 H( Z2 v0 [. ?' ]$ R
# y5 n. o' k1 E0 f$ I可是还是觉得不过瘾,还有下面的情况需要比对。于是就有了这篇。; [' N- G8 A7 l; R+ m$ P% `
, u% l3 @/ V \7 V
案例:. d- ? A! S. C1 u" m. D
- r L" _* b) b) x3 `# T6 r
" U$ i$ _7 v7 O; W$ r% j3 u: D
R1 B' A! M; K. S( l4 z' r想要基于有限样本数来确定他的频谱。* |5 _) O4 e1 [4 h# O/ p4 e1 W; R
0 |5 N$ G) G6 L- K6 b8 _* A
下面我们分如下几种情况来分别讨论:# C/ a2 Q4 I9 J: L7 V0 A
1 d M. J/ c# K+ p2 K% M6 oa. 求出并画出
的DTFT;
# R$ M) G1 H4 ?" F: ~9 y% Y0 p
& ?! ]0 [7 q) m: C4 [& D: Ib. 求出并画出
的DTFT;7 _: K0 G) q5 G9 q4 o7 ~
( S: P- o- o3 C$ [ N9 Y
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,2,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,2,2);
- % stem(w1/pi,magY1);
- % title('DFT of x(n) in [0,9]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- % hold on
- plot(w/pi,magX);
- % hold off
- subplot(2,2,3)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,2,4);
- % stem(w1/pi,magXk);
- % title('DFT of x(n) in [0,99]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
& D9 ~- G$ _6 L% u5 F& k( n
/ {$ d* o/ B. P; B v! ?/ O" j8 g- V/ @' p
' R) ^6 P9 j0 H E% x. K& b/ a$ L
" i6 }+ c2 f; m# H9 s& Y O可见,b问这种情况,拥有x(n)的更多数据,所以得到的DTFT更加的准确,正如我们所料,频谱在w = 0.48pi以及0.52pi处取得峰值。而a问中的图就看不出这种关系,因为获得序列数据太少,已经严重影响到了频谱的形状。
| S: o) O( }0 v, L, q
$ D' v. F5 q) M" I$ B8 u
7 o$ F7 h9 A5 D! N* s& {) f7 z. ~' | a9 @. I4 m
, T5 Y0 n9 T' j3 b0 _, a+ j' K
* w- V+ f; E- c7 {7 ~. `2 G
1 H9 k' Z6 z- C1 ~ |
|