EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
基于Pspice的升压型开关稳压电源设计与仿真内容摘要:介绍并分析了升压型开关变换器的拓扑结构及其仿真波形,以及PWM电流模式的不稳定性及其解决办法。借助仿真软件PSpICe设计了一款以UC2843为核心的升压开关稳压电源。整个电路易调试、工作稳定、高可靠性、成本低。 关键词 PSpice软件;升压变换器;开关电源;UC2843 20世纪50年代,美国宇航局以小型化、重量轻为目标,为搭载火箭开发了开关电源。在半个多世纪的发展过程中,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代由传统技术设计制造的连续工作的线性电源,并广泛用于电子、电气设备中。20世纪80年代,计算机全面实现了开关电源化,率先完成了计算机的电源换代。20世纪90年代,开关电源在电子、电气设备以及家电领域得到了广泛的应用,开关电源技术进入快速发展期。 . W7 _, f7 d1 {, k, U
( B& ^# |1 j: o0 T3 e
6 N( y- _% m3 R! g7 h! z& A: e( ?
1 v, p5 R3 _2 x* d! v; V1 y' t4 m9 u cadence旗下的PSpice是一款电路仿真软件,能够对复杂的模数混合电路进行仿真,而且开关电源也不例外。 1 升压变换器拓扑结构 升压变换器属于间接能量传输变换器。供电过程包含能量的存储和释放两方面。如图1所示,VcLOCk是脉冲信号源,提供PWM电压,用以功率开关S1的导通与截止。Rsense为电流取样电阻,Resr为电容的等效串联电阻。在开关S1导通期间,二极管D1截止,电感储存能量,输出电容单独为负载提供电能。在开关S1断开期间,二极管D1导通,储存了能量的电感与输入电源串联,为输出提供电能,其中一部分转移到电容C1里。 ![]()
1.1 工作于CCM条件下的升压变换器波形 对图1所示电路,借助PSpice进行仿真,获得如图2所示的波形图。这是典型的电感电流连续导通模式(CCM)。 ![]()
- ^5 N0 @' }+ A7 W. I$ g6 [ Q 曲线①代表PWM波形,用于触发功率开关导通或断开。当开关S1导通时,公共点SW/D电压几乎降到0。相反,当开关S1断开时,公共点SW/D电压增加为输出电压和二极管的正向压降之和,如曲线②所示。曲线③描述了电感两端电压的变化。高电平期间,电感左侧电压为Vin,右侧几乎为0,对应功率开关导通;而低电平期间,电感左侧电压仍为Vin,而右侧突变为Vout,因为功率开关截止,同时二极管导通,此时对应电感电压为负值,这就意味着输出电压大于输入电压。0 x9 k( z, {( e6 T- ^
电感电路在平衡时,电感两端电压平均值为0,即电感的电压时间平衡。也就是图中阴影部分面积S1=S2。假设D为PWM的占空比,TSW为开关周期。则
: d, g' T) k0 O+ B ]2 j
% N, n( B; O" g1 b* z9 m. s1 z 可见,在理想情况下,D越接近1,输出电压将趋于无穷大。实际上,只要输出一定的电流,就难以得到传输系数超过4~5的升压变换器。 3 @$ l5 N% k' d$ D+ i
0 L; W* x: O* ?0 L3 o z4 S' m( D8 U
+ ~. R: j# X- z' d% G1 A/ G8 f) |, T# N 曲线④为电感电流波形。可以看到电感电压虽然出现了跳变,但电感电流仍然是连续的。 曲线⑤是输出电压波形,也是电容电压。可以看到恢复尖峰以及电压纹波。若考虑输出电容的ESR,则相对纹波为
( B0 |- A# X1 ^7 }$ q) F# m% O 曲线⑥是输入电流,明显它是连续的。' Y% }( e2 _6 R/ P, n) u
1.2 工作于临界导通模式下的电感电流6 P3 \* q0 V' b
当电感电流纹波降到0时,功率开关S1立即闭合,电感电流又向上增大。如图3所示电感电流处于临界点的电流变化。此时,电感电流平均值即对称三角形的电流平均值为最大值的1/2。即' c! `8 o: V6 Y9 w* b, k8 Z; K
4 c: l; p1 r# v. |
![]()
$ J+ ?; B1 P2 k9 K2 J
联立以上两式,可得R和L的临界值
/ [$ S- s8 l2 l) Y- P6 Q7 x8 i
8 G. s4 u, Z* F& v3 ]9 ]9 m 0 o& Y( C6 L2 Z9 A6 R7 y4 i
! P c5 v' Z- K' {# k* x
|