找回密码
 注册
关于网站域名变更的通知
查看: 294|回复: 1
打印 上一主题 下一主题

Signal.Detection.and.Estimation

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2016-11-8 13:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Contents& r2 e* }& j! c
Preface xv
) ~+ B  Q7 q2 CAcknowledgments xvii
& u: s7 Y' B( `/ b* v  x+ D" IChapter 1 Probability concepts 1; N5 I  W" U' V& `. m: @8 |+ S
1.1 Introduction 1
/ `7 f9 P6 }& S1.2 Sets and Probability 1
0 }% A) I( {2 o0 P. Z1.2.1 Basic Definitions 1, s5 P6 \/ J0 v* y0 N
1.2.2 Venn Diagrams and Some Laws 3+ e$ L! y1 K% M( C' E( V
1.2.3 Basic Notions of Probability 6
4 V6 l6 K4 }; x1.2.4 Some Methods of Counting 8
& b# K  ?- ]. C1.2.5 Properties, Conditional Probability, and Bayes’ Rule 12  H6 e; J8 j% }/ |4 T
1.3 Random Variables 17
0 H$ W" h/ ~0 w& I1.3.1 Step and Impulse Functions 17! l! Y- b7 T$ ?8 q4 r
1.3.2 Discrete Random Variables 18
: ^2 S, O, u$ V; k, {1.3.3 Continuous Random Variables 20
$ Z2 j' t7 U# P( w  H) h+ q2 [0 ?; j1.3.4 Mixed Random Variables 22
/ W4 I3 F/ Q7 L) q* G% ^* C1.4 Moments 238 x0 Y- J( z( n% Z
1.4.1 Expectations 234 v8 X7 M4 u  {# x1 }% u& A
1.4.2 Moment Generating Function and Characteristic Function 26
- p0 z; H6 E" D3 r' \1.4.3 Upper Bounds on Probabilities and Law of Large
  W4 _7 B7 I. Y" @' Z; j" hNumbers 29/ i: r+ H6 E4 G3 i  k5 _
1.5 Two- and Higher-Dimensional Random Variables 312 n) s: ~! |. T: B. }0 S& ]' J% {
1.5.1 Conditional Distributions 33, e2 C4 U9 ^+ s4 U# J! V
1.5.2 Expectations and Correlations 41# o7 \' a/ H5 {2 `/ k& X
1.5.3 Joint Characteristic Functions 44
3 K4 @9 o  R. F1 }4 J1.6 Transformation of Random Variables 48' f% k* K- c6 ^
1.6.1 Functions of One Random Variable 49
& n0 M* Y+ \3 j/ O. G7 z0 g1.6.2 Functions of Two Random Variables 52( C8 I8 f* r' a( u9 t, J. h- ?- ?/ q
1.6.3 Two Functions of Two Random Variables 592 e; ~0 }; h; [' x8 c9 o
1.7 Summary 65. y. E9 T9 F, _# E9 Z
Problems 653 j! V* `7 Q2 r4 s" R, L- `$ b( |
Reference 73
# U; ^; [7 M, _. H) lSelected Bibliography 73! A; N5 g: n7 Y% P( E* b7 c6 ^
Chapter 2 Distributions 75
3 I- A6 V( ]) E! I/ g2.1 Introduction 75# D( c, h9 l. L8 V5 s9 Z
2.2 Discrete Random Variables 755 L! K/ t+ v. f! k& w
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 75
4 |# S3 e  M% ~7 i0 Y: t2.2.2 The Geometric and Pascal Distributions 78+ m6 ~) b% g* u0 o8 T" i4 ]0 N3 u- f
2.2.3 The Hypergeometric Distribution 82( l7 U/ P4 z$ _4 g- i
2.2.4 The Poisson Distribution 85) M- q1 @, p$ G! k+ I1 y0 G
2.3 Continuous Random Variables 88$ j( Z- [3 j' k8 r  k+ s! E! k
2.3.1 The Uniform Distribution 88! w. n3 T6 U! |; \# H& [
2.3.2 The Normal Distribution 897 n+ Y% r7 o: g
2.3.3 The Exponential and Laplace Distributions 96" D+ L1 H$ B+ W9 u8 k+ {2 A
2.3.4 The Gamma and Beta Distributions 98  l' x( p, c; X; O
2.3.5 The Chi-Square Distribution 101
) E0 \( _3 F8 r* `$ z2.3.6 The Rayleigh, Rice, and Maxwell Distributions 106
4 P2 O+ p" Z, ?4 q0 s2.3.7 The Nakagami m-Distribution 115
% w) a' I' p) {) M  t( [' A2.3.8 The Student’s t- and F-Distributions 115
8 y7 m( }1 N* y7 H; B2 j8 w2.3.9 The Cauchy Distribution 1200 K0 R( t. L9 v$ U3 ?
2.4 Some Special Distributions 121
0 e; _  f3 t% z8 r6 Q. S2.4.1 The Bivariate and Multivariate Gaussian Distributions 121
, D' Q! Z$ w$ o0 S% o2.4.2 The Weibull Distribution 1292 Q3 R$ u- T4 a+ Z% l/ O# i
2.4.3 The Log-Normal Distribution 1314 a0 V# z/ X; }. r3 M
2.4.4 The K-Distribution 1321 B3 R" y  {+ l0 M
2.4.5 The Generalized Compound Distribution 135
9 S7 g/ ]2 C' K# ?$ {3 C( i2.5 Summary 136! O& h$ @/ D! A% N
Problems 1371 f% b+ A+ p, q' u! r- ~
Reference 139
  G# X; O! p9 Y- K( OSelected Bibliography 139  }9 Q! c0 W& J/ y
Chapter 3 Random Processes 141
! t) L% v. J; k% X. u7 v3.1 Introduction and Definitions 1411 U8 g1 C6 t, P; F* ]7 {
3.2 Expectations 145
; N+ K7 T+ ?. D$ R3.3 Properties of Correlation Functions 1539 N: f# I" Z8 u, s5 m
3.3.1 Autocorrelation Function 153
( |1 @0 E  c5 K; y# E. g3.3.2 Cross-Correlation Function 153
2 F  |5 @# J# q6 f3 S3.3.3 Wide-Sense Stationary 154
5 n& I7 K) m3 E5 @+ @  G) T3.4 Some Random Processes 1561 `3 F* I9 m# k# N% D
3.4.1 A Single Pulse of Known Shape but Random Amplitude
7 g. D+ `# N. r1 @4 d: Fand Arrival Time 156
$ U; [- A9 ?! `% v3.4.2 Multiple Pulses 157; ^; |- o4 I; d  B( M0 u, o9 T
3.4.3 Periodic Random Processes 158. D6 W6 T9 P4 h4 A- l0 |
3.4.4 The Gaussian Process 161
0 z0 ^& W9 s& ^- [3.4.5 The Poisson Process 1632 i$ S8 @5 E! V3 f9 J
3.4.6 The Bernoulli and Binomial Processes 166& D$ M9 u8 i( v) N7 N
3.4.7 The Random Walk and Wiener Processes 168$ D  y* |1 c$ @. a7 i
3.4.8 The Markov Process 172
* f; d$ b0 [9 }3.5 Power Spectral Density 174
5 `( [" Y) q$ u- ~2 k9 l/ A+ R3.6 Linear Time-Invariant Systems 178
, s: V2 h- @# w0 ]' J3.6.1 Stochastic Signals 179
5 P/ v: h! g* W! B3.6.2 Systems with Multiple Terminals 185
- @6 E. d! Y) H. p9 T3.7 Ergodicity 186: {. B8 O; d- R" H# k
3.7.1 Ergodicity in the Mean 186+ M8 G$ E! r7 R3 B4 p7 E" e7 U: E/ B5 A. z
3.7.2 Ergodicity in the Autocorrelation 187+ C! t# \' o- m* L/ g5 l% S. A
3.7.3 Ergodicity of the First-Order Distribution 188
/ M) s4 v* Z" G/ `: u1 L3.7.4 Ergodicity of Power Spectral Density 188
* z/ h" [5 [2 p& \$ i3.8 Sampling Theorem 189$ `3 |, k% ?! V3 m- [5 W
3.9 Continuity, Differentiation, and Integration 194
5 D: X' P4 ?0 b3.9.1 Continuity 194
; J1 ^' c# ~8 x# ~3.9.2 Differentiation 196" g* q9 ]- N. e: m/ I7 s! x
3.9.3 Integrals 199
9 F, h8 N2 o5 s$ L- u: y3.10 Hilbert Transform and Analytic Signals 201
+ T2 ?% e0 `+ h& Y3.11 Thermal Noise 205) e9 c" v' g% x; k7 X1 q) X1 y
3.12 Summary 2113 ~$ p" ]& @) m$ W* S+ s
Problems 212
8 E9 G6 ]6 i! H# R  S  [1 fSelected Bibliography 221/ e" J( y2 X4 A# J, d
Chapter 4 Discrete-Time Random Processes 223
; p3 L3 A8 K+ D8 I4.1 Introduction 2236 g' y1 m: y; K
4.2 Matrix and Linear Algebra 224
) D# F5 S  i8 h4.2.1 Algebraic Matrix Operations 224% `" B6 h% h$ l" T. M6 ]
4.2.2 Matrices with Special Forms 232
* H- k. f* [# G2 v4.2.3 Eigenvalues and Eigenvectors 236
: e% S7 T% k3 G2 A2 i4 E4.3 Definitions 245
, @3 l3 ^  K5 ]- r/ J4.4 AR, MA, and ARMA Random Processes 253
3 F# D3 A, ^5 v+ ^# K: L& _4.4.1 AR Processes 254
  F: Z6 Z' w" d& T) s# H9 }9 K4.4.2 MA Processes 262
& O, v! @4 X3 m2 H) x  R9 f4.4.3 ARMA Processes 264
, r& Q! j. B  a5 \0 l4.5 Markov Chains 266
0 m/ u) [; }$ j$ ^' A& c6 h4.5.1 Discrete-Time Markov Chains 267- p* j$ k$ Y6 \6 e8 n: x. z
4.5.2 Continuous-Time Markov Chains 276' I3 t9 E8 `6 i3 F. G
4.6 Summary 284$ F2 G' k- Q+ j! V2 W/ x  Q( M
Problems 284
! U- ^9 w- J8 {! Z- N) t+ \References 287+ E0 A9 D4 E7 V3 u4 s# D/ e( _
Selected Bibliography 288: T) B- n; g1 J2 H3 K
Chapter 5 Statistical Decision Theory 289& V7 j- f$ B$ p( q
5.1 Introduction 289/ ^& Y* X* [5 ?- S- w2 J
5.2 Bayes’ Criterion 2917 L/ S' b, n5 N+ u* s
5.2.1 Binary Hypothesis Testing 2916 j2 c1 K1 a  X0 l1 f
5.2.2 M-ary Hypothesis Testing 303' M3 d/ i) G' U" B6 D3 P/ }' Z
5.3 Minimax Criterion 313
8 i" i1 ^7 [' A) z0 ?5.4 Neyman-Pearson Criterion 317
" `0 V- x7 o: f0 U5 |5.5 Composite Hypothesis Testing 326
& c1 S0 ^! I* n  g5 H. ?+ g! x$ [+ f5.5.1 Θ Random Variable 3270 X8 [: Y. i" X: H# n2 N( E) U
5.5.2 θ Nonrandom and Unknown 329) p' S; e. L1 y& e
5.6 Sequential Detection 3326 _) y& v% u4 a0 H) Z- ~
5.7 Summary 337  K8 m0 h7 A! i
Problems 338
( T) o" e( s/ r! KSelected Bibliography 343' \! _/ s5 u: p4 C7 J. {* ?( t
Chapter 6 Parameter Estimation 345
2 v* ]( Q5 w/ m( Z9 d2 b9 E6.1 Introduction 345
4 D1 L5 o( a" q# Q. j. ]6.2 Maximum Likelihood Estimation 346
6 t" c1 j* B  X6.3 Generalized Likelihood Ratio Test 348
/ w- F% C, i+ f/ A6 I6.4 Some Criteria for Good Estimators 353
) y% ]* z* f( k, P1 F4 l6.5 Bayes’ Estimation 355
/ M5 h8 m# P, D! B, Z6 c8 a6.5.1 Minimum Mean-Square Error Estimate 357
" h: ?2 j1 K% V7 A2 b6.5.2 Minimum Mean Absolute Value of Error Estimate 3589 {( S6 @$ F( v
6.5.3 Maximum A Posteriori Estimate 359
; h% T, t" q3 T% |6.6 Cramer-Rao Inequality 364! i1 T% O) ?9 n) N- ?) a# j
6.7 Multiple Parameter Estimation 3716 A- c; k" O( O4 A+ ]2 W
6.7.1 θ Nonrandom 371
5 b& Y) Q# i$ K' ^6 B& S  i( m6.7.2 θ Random Vector 376
  |1 K3 Y* \' z8 B/ ?% N9 U8 M6.8 Best Linear Unbiased Estimator 378! @" N: }# k& ?% h5 _  m* P9 E
6.8.1 One Parameter Linear Mean-Square Estimation 379
, [4 N9 \8 A' }* P- V6.8.2 θ Random Vector 381# J4 J9 V3 B9 _
6.8.3 BLUE in White Gaussian Noise 3833 u: b/ G5 I4 Y9 `4 [3 D! f5 M9 A
6.9 Least-Square Estimation 388
% w2 C% x( r5 |$ X$ r6.10 Recursive Least-Square Estimator 391
$ ]8 x" N! R0 S+ J& d6.11 Summary 393
* X& Q3 }( K( t, M/ \$ y% v# r" EProblems 394
7 f5 Y3 ~* w+ r+ LReferences 398
- G$ K  z9 `; @2 Q% c6 C. pSelected Bibliography 398  C( I" Z9 i& I) I* {: j$ v: r. R4 g
Chapter 7 Filtering 399
5 u6 h! F: ~+ {$ S; F7.1 Introduction 399
6 L7 B0 N% ]( b7.2 Linear Transformation and Orthogonality Principle 400- y8 F* Q% ?! f3 ]+ H. ~6 o
7.3 Wiener Filters 409
+ B2 \7 x% v1 ]$ E% X& T7.3.1 The Optimum Unrealizable Filter 410
% I+ T( F) y0 i0 o7.3.2 The Optimum Realizable Filter 416
+ L' Q. }9 F. y: \* p" u% P' D7.4 Discrete Wiener Filters 424
/ s' v' e& K9 \2 K7.4.1 Unrealizable Filter 4254 a2 b% D! G$ `9 ]: Q! K
7.4.2 Realizable Filter 426
7 a9 ], h, \* e* a/ }, V7.5 Kalman Filter 4362 M$ X* W% W5 \: I) m; W  @* T$ n
7.5.1 Innovations 437% t  c+ K. t7 y3 `+ F$ w3 l8 M
7.5.2 Prediction and Filtering 440; I2 n2 M8 {( H: n
7.6 Summary 445
+ j# D, f6 Y* h  BProblems 4450 r: k$ l2 g" L
References 4485 W" I- ~5 `4 l8 n- w
Selected Bibliography 448' w- e( w. E/ Z# m+ \" o0 u- Z& e
Chapter 8 Representation of Signals 449
) p: s7 W& v- c) |( t' F, E1 H8.1 Introduction 449
- w( S# H( \) ?  J7 ]% d5 u9 \8.2 Orthogonal Functions 449" X# U9 F, n% @) ~1 q- R. r/ d
8.2.1 Generalized Fourier Series 451& E. c9 {+ A! ~3 |/ m
8.2.2 Gram-Schmidt Orthogonalization Procedure 455
( A' o2 X8 Q0 g  p- _8.2.3 Geometric Representation 458% [  B1 I8 @$ b1 y% w/ v
8.2.4 Fourier Series 463, n: ^9 [! x! x8 d- V
8.3 Linear Differential Operators and Integral Equations 466+ n- {3 j% U9 B0 s+ O9 ?1 U" F, `( ]
8.3.1 Green’s Function 470
7 l- u2 X5 I. H- o$ h8.3.2 Integral Equations 471- @  a7 K0 `3 g# j; q( a3 J
8.3.3 Matrix Analogy 479+ v# E& h$ P/ P
8.4 Representation of Random Processes 480) E2 ~; ?1 F& g7 E& Z, k) i! a3 Q
8.4.1 The Gaussian Process 483/ y' k) W. U- }1 u. ?5 s
8.4.2 Rational Power Spectral Densities 487
' v# u" r5 q1 x8 i  z( ~( U3 E& \# J8.4.3 The Wiener Process 492" e" r! d! {7 \& q  F4 t" w
8.4.4 The White Noise Process 493' t" o: P0 v5 ^8 ]6 k
8.5 Summary 495: O, q- I# N6 D0 U! q
Problems 496
! u5 i$ n& R- ]3 w, c1 ?$ w: c; iReferences 500
$ b5 m7 p" X* T2 y' l, E. F9 M% ~Selected Bibliography 500, N8 t$ ~2 A) ^# W! \) E) v3 C. |5 c8 y, _
Chapter 9 The General Gaussian Problem 503
$ e& f1 k) I6 e$ j3 v4 b9.1 Introduction 5037 i* X( n: z8 t1 M0 G( ]1 k
9.2 Binary Detection 503
4 L: c  T# F4 J5 _) a9.3 Same Covariance 505" V  d1 B8 Z1 J# j
9.3.1 Diagonal Covariance Matrix 508
; I: ^; Z2 w) _, c' y$ U/ m9.3.2 Nondiagonal Covariance Matrix 511& T# N1 i9 o; M# Y: O
9.4 Same Mean 518
: a8 I1 W- L/ G4 e: \8 ^. K9.4.1 Uncorrelated Signal Components and Equal Variances 519
8 Q+ d4 Q6 T+ P1 c' E" t0 O$ q9.4.2 Uncorrelated Signal Components and Unequal
" t2 b6 ?) U3 J: e% ^1 ]Variances 522! R0 Q" ^: Y, Y% Y" ^
9.5 Same Mean and Symmetric Hypotheses 524
8 B% m/ Q9 {7 B9 {9.5.1 Uncorrelated Signal Components and Equal Variances 5263 B2 R2 R, o6 _" }* ^6 F" L" Y
9.5.2 Uncorrelated Signal Components and Unequal
$ v8 b! p% e3 K1 aVariances 5289 ?5 p( Y( H. O2 y- @2 z
9.6 Summary 529  A* q- H: b  l+ L% h
Problems 530  L6 j/ v% b- {& }$ P( t
Reference 532
/ i9 p$ W2 {2 T) p% ?3 ?/ WSelected Bibliography 532
+ ~$ |$ `7 I+ h1 T; Z% M$ qChapter 10 Detection and Parameter Estimation 533! _0 a  T0 H6 B% w" f, E8 F
10.1 Introduction 5331 S' t# E$ o: k  v8 \/ |& v/ P9 N
10.2 Binary Detection 534
, D7 N9 F) ?2 W0 A3 R7 J10.2.1 Simple Binary Detection 534) T) q0 w' Z: |
10.2.2 General Binary Detection 543
' N& a% r1 d: R10.3 M-ary Detection 556
$ z7 w# \& ?9 B: n- q+ n  S10.3.1 Correlation Receiver 557
% {  F5 ]4 j2 r; D10.3.2 Matched Filter Receiver 5676 [4 G5 V9 I' v2 m
10.4 Linear Estimation 572: _3 [. e- i, A
10.4.1 ML Estimation 573
0 j% W" O7 _3 [2 o10.4.2 MAP Estimation 575, D  N$ Z6 Q! I; s8 C3 q
10.5 Nonlinear Estimation 576
! h- v$ I) `" M/ Q0 c% f- j10.5.1 ML Estimation 576
' P+ C; c+ |) S, e* u- A10.5.2 MAP Estimation 5798 R( b0 ^& r2 n% I7 Z
10.6 General Binary Detection with Unwanted Parameters 580
9 T9 J" U- J' w% H5 \% y0 h) k10.6.1 Signals with Random Phase 5831 w% y( `/ W3 X- F8 d- v
10.6.2 Signals with Random Phase and Amplitude 595. G! z( ^" M4 S# I% s1 e
10.6.3 Signals with Random Parameters 598
+ l& R3 B  |% u2 J8 e10.7 Binary Detection in Colored Noise 606) `4 Q  ^' x4 }$ p
10.7.1 Karhunen-Loève Expansion Approach 607
- x/ I/ Z2 b+ F4 C2 _2 g10.7.2 Whitening Approach 611: ?/ ?+ L2 P& h/ Q- V
10.7.3 Detection PeRFormance 615
8 F  J, S7 |3 y) `2 @10.8 Summary 617  c) \- H3 R% f# P& h& Q6 C* L/ k
Problems 6184 @# v' @  r7 G
Reference 626
! L9 ^5 U2 t" J) b  d9 ASelected Bibliography 626
9 f8 h2 ]/ m8 N2 q6 w% Y0 V& NChapter 11 Adaptive Thresholding CFAR Detection 627
$ [1 i' N& v: o" i11.1 Introduction 627, x& e( ]4 P( E) \; X
11.2 Radar Elementary Concepts 6290 s- x: `5 o5 i4 g
11.2.1 Range, Range Resolution, and Unambiguous Range 631
+ P8 \2 M# d2 o8 j9 J2 ~) ?) o' P11.2.2 Doppler Shift 6339 m, ]: i" r  l' n! R
11.3 Principles of Adaptive CFAR Detection 634) n: ^) c0 Z; J% O2 `
11.3.1 Target Models 640
7 X6 n. ]9 h3 U  }* j11.3.2 Review of Some CFAR Detectors 6421 M+ n) H: H; G# k0 M) F, T8 B
11.4 Adaptive Thresholding in Code Acquisition of Direct-7 ?- K+ s- K- D) o
Sequence Spread Spectrum Signals 648
# |3 }/ F3 L1 l3 h3 r7 j$ i# ]11.4.1 Pseudonoise or Direct Sequences 649& r) s. i4 h& K( }
11.4.2 Direct-Sequence Spread Spectrum Modulation 652; F! {) l4 P8 ~" `1 V5 Q9 `4 }9 @
11.4.3 Frequency-Hopped Spread Spectrum Modulation 655; A" f( u* t" q( s( x
11.4.4 Synchronization of Spread Spectrum Systems 655
& z6 r- k2 n. E0 v# _6 Z+ k. |3 o( P11.4.5 Adaptive Thresholding with False Alarm Constraint 659
+ c1 ]; \0 o& J" ]4 V; O' T/ d- k11.5 Summary 660/ J/ d$ N% v$ q+ t
References 661
; l# {, y: b8 v: o* m8 M1 mChapter 12 Distributed CFAR Detection 6657 D8 P+ r8 E. D% c4 R; a( T
12.1 Introduction 6657 X8 Z* h# i6 n- ~
12.2 Distributed CA-CFAR Detection 666
: p, i, c0 z+ M/ D. n12.3 Further Results 670
7 R8 ^, p0 k8 D6 ?2 H+ P12.4 Summary 6710 H- h1 r) W1 ?+ ?3 d4 q
References 672! o4 ^- e* ^7 L0 q
Appendix 675! d# }8 D; c7 @3 _3 U) F- `
About the Author 683- Q2 h* R9 A7 Z. V( w
Index 685
" P4 G$ _9 b! y

Signal.Detection.and.Estimation.rar

4.24 MB, 下载次数: 2, 下载积分: 威望 -5

该用户从未签到

2#
发表于 2016-11-8 14:19 | 只看该作者
看贴学心得,回贴是美德
0 [8 R* [1 K) E& D7 I
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-10-13 04:38 , Processed in 0.156250 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表