对高分辨率合成孔径雷达(SAR)产品日益增长的需求成为使用多个发射和多个接收通道(也称为多输入多输出MIMO)SAR开发的驱动因素之一。这种新型传感器使得成像技术能够提高测量能力,并使它们与传统的SAR系统区别开来。2 `/ }! A- q1 a5 w* C0 x
6 A* P& b& z8 }# Z
在数字化之后,时间和频率变化数字波束成形(DBF)被应用于多通道数据,在每个极化处,允许分离散射矩阵的四个极化分量。这种波形分离方法在下文中将称为正交波形波束形成(OWB)技术,因为通道的正交性通过波形的特殊结构与DBF结合来实现。 ( @% L, {( F( ^3 v2 t* V' A 8 N6 f: T6 g9 H& F2 T _与点目标雷达应用相比,同时发射的水平和垂直极化之间的SAR波形正交性不仅需要单个时间实例,而且还需要由于雷达回波的大时间扩展而在信号之间的任意移位。原因在于在匹配滤波器的输出处存在同时发送的正交波形,这降低了SAR图像的质量。在脉冲压缩之后,这些干扰随时间扩展,但仍然存在于SAR信号中。 " ?+ { z: u0 [* [) ? e& j5 w$ o
因此,传统的正交波形,编码和后处理技术将不能正确地用于精确的SAR成像。从SAR波形中去除不需要的能量的有效方法是使用具有良好定义的相关特性的类似线性调频的发射信号,并结合接收上的空间滤波。9 i3 ]* s0 i% |1 D7 D
' P a( F; v6 T适用于OWB技术的波形的一个例子是分段移位啁啾(SSC)波形。这些伪正交波形是啁啾的移位版本,其保持相同的调制速率但需要不同的子脉冲持续时间和带宽。在接收时,子脉冲可以组合成全带宽B和全脉冲持续时间的单个信号。图1中示出了伪正交波形的示例,其中针对两个发送信道在时域和时频域中绘制了啁啾和SSC信号。) ~1 K, e' O! D. G- ]9 Z