|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
- \8 N3 Y2 P4 \7 U
链表是C语言编程中常用的数据结构,比如我们要建一个整数链表,一般可能这么定义:
1 r& @, @$ u( Q# D: }2 k/ @* W% `) k4 J3 r
- struct int_node {
- int val;
- struct int_node *next;
- };
8 T' C7 P% x# ~: m4 X( \7 g
9 P% o* A: Z# `7 D# j# l7 ]4 ^0 \5 m
为了实现链表的插入、删除、遍历等功能,另外要再实现一系列函数,比如:" `- ?9 z9 `: Y& P5 E0 w6 y, s
8 y" s3 ^ U% b6 |- void insert_node(struct int_node **head, int val);
- void delete_node(struct int_node *head, struct int_node *current);
- void access_node(struct int_node *head)
- {
- struct int_node *node;
- for (node = head; node != NULL; node = node->next) {
- // do something here
- }
- }- X- |0 X: R9 }# Y4 L& I
$ `0 w* b4 M0 [7 A u# m
0 m+ c) j9 |% ]1 M% l
如果我们的代码里只有这么一个数据结构的话,这样做当然没有问题,但是当代码的规模足够大,需要管理很多种链表,难道需要为每一种链表都要实现一套插入、删除、遍历等功能函数吗?* j$ \' F$ `# C, Z7 m( t% e& n
# W2 n. L; b" R: j0 o t( i熟悉C++的同学可能会说,我们可以用标准模板库啊,但是,我们这里谈的是C,在C语言里有没有比较好的方法呢?9 u3 V q6 P( t
; Q/ V; b7 ~$ @Mr.Dave在他的博客里介绍了自己的实现,这个实现是个很好的方案,各位不妨可以参考一下。在本文中,我们把目光投向当今开源界最大的C项目--Linux Kernel,看看Linux内核如何解决这个问题。, H X& S; m( j8 G
# o' ^1 j. O% D* o7 QLinux内核中一般使用双向链表,声明为struct list_head,这个结构体是在include/linux/types.h中定义的,链表的访问是以宏或者内联函数的形式在include/linux/list.h中定义。
" r8 L; l5 j$ s j7 {; ^
; t) ~% W8 U- K, Q' O% m/ E- q. H5 i- struct list_head {
- struct list_head *next, *prev;
- };& } t7 ?$ h+ F8 _) d, q; ?' N: b
/ _3 z( }2 w* I" w2 e% N
. p- @( `; @8 H
Linux内核为链表提供了一致的访问接口。9 _; P; K p0 d# e$ e$ N, i2 Q( \, q
/ l/ P7 u& f# j5 n5 p* C3 H2 m- void INIT_LIST_HEAD(struct list_head *list);
- void list_add(struct list_head *new, struct list_head *head);
- void list_add_tail(struct list_head *new, struct list_head *head);
- void list_del(struct list_head *entry);
- int list_empty(const struct list_head *head);% V2 K( x5 F, H. M
, r3 V! T, ?& Q; O- W/ v; M7 O% {* o9 g2 t7 Y; x! J
以上只是从Linux内核里摘选的几个常用接口,更多的定义请参考Linux内核源代码。
$ E2 S/ G. o: D9 n
- l0 E3 K9 A. G我们先通过一个简单的实作来对Linux内核如何处理链表建立一个感性的认识。9 _+ v/ v6 v* u3 F$ p: [5 g% k/ G/ c
7 D: s. q; q! i4 q5 \, _, J# G
- #include <stdio.h>
- #include "list.h"
- struct int_node {
- int val;
- struct list_head list;
- };
- int main()
- {
- struct list_head head, *plist;
- struct int_node a, b;
- a.val = 2;
- b.val = 3;
- INIT_LIST_HEAD(&head);
- list_add(&a.list, &head);
- list_add(&b.list, &head);
- list_for_each(plist, &head) {
- struct int_node *node = list_entry(plist, struct int_node, list);
- printf("val = %d\n", node->val);
- }
- return 0;
- }2 q% B6 s0 s" q3 K4 w, U& V
+ X3 r# n+ N) ~( w7 }" T7 d5 p, b3 u" j9 Y7 g- }, ^0 S
看完这个实作,是不是觉得在C代码里管理一个链表也很简单呢?6 c; ~/ y& S( g4 k' J
/ B$ O5 a& n7 ^5 u* d' ^
代码中包含的头文件list.h是我从Linux内核里抽取出来并做了一点修改的链表处理代码,现附在这里给大家参考,使用的时候只要把这个头文件包含到自己的工程里即可。
) J& Y, E. x' U. g$ q# h7 e
( T9 T/ G, L, r7 ^# ~6 |5 d- #ifndef __C_LIST_H
- #define __C_LIST_H
- typedef unsigned char u8;
- typedef unsigned short u16;
- typedef unsigned int u32;
- typedef unsigned long size_t;
- #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
- /**
- * container_of - cast a member of a structure out to the containing structure
- * @ptr: the pointer to the member.
- * @type: the type of the container struct this is embedded in.
- * @member: the name of the member within the struct.
- *
- */
- #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))
- /*
- * These are non-NULL pointers that will result in page faults
- * under normal circumstances, used to verify that nobody uses
- * non-initialized list entries.
- */
- #define LIST_POISON1 ((void *) 0x00100100)
- #define LIST_POISON2 ((void *) 0x00200200)
- struct list_head {
- struct list_head *next, *prev;
- };
- /**
- * list_entry - get the struct for this entry
- * @ptr: the &struct list_head pointer.
- * @type: the type of the struct this is embedded in.
- * @member: the name of the list_struct within the struct.
- */
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
- #define LIST_HEAD_INIT(name) { &(name), &(name) }
- #define LIST_HEAD(name) \
- struct list_head name = LIST_HEAD_INIT(name)
- static inline void INIT_LIST_HEAD(struct list_head *list)
- {
- list->next = list;
- list->prev = list;
- }
- /**
- * list_for_each - iterate over a list
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each(pos, head) \
- for (pos = (head)->next; pos != (head); pos = pos->next)
- /**
- * list_for_each_r - iterate over a list reversely
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each_r(pos, head) \
- for (pos = (head)->prev; pos != (head); pos = pos->prev)
- /*
- * Insert a new entry between two known consecutive entries.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_add(struct list_head *new,
- struct list_head *prev,
- struct list_head *next)
- {
- next->prev = new;
- new->next = next;
- new->prev = prev;
- prev->next = new;
- }
- /**
- * list_add - add a new entry
- * @new: new entry to be added
- * @head: list head to add it after
- *
- * Insert a new entry after the specified head.
- * This is good for implementing stacks.
- */
- static inline void list_add(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head, head->next);
- }
- /**
- * list_add_tail - add a new entry
- * @new: new entry to be added
- * @head: list head to add it before
- *
- * Insert a new entry before the specified head.
- * This is useful for implementing queues.
- */
- static inline void list_add_tail(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head->prev, head);
- }
- /*
- * Delete a list entry by making the prev/next entries
- * point to each other.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_del(struct list_head * prev, struct list_head * next)
- {
- next->prev = prev;
- prev->next = next;
- }
- /**
- * list_del - deletes entry from list.
- * @entry: the element to delete from the list.
- * Note: list_empty on entry does not return true after this, the entry is
- * in an undefined state.
- */
- static inline void list_del(struct list_head *entry)
- {
- __list_del(entry->prev, entry->next);
- entry->next = LIST_POISON1;
- entry->prev = LIST_POISON2;
- }
- /**
- * list_empty - tests whether a list is empty
- * @head: the list to test.
- */
- static inline int list_empty(const struct list_head *head)
- {
- return head->next == head;
- }
- static inline void __list_splice(struct list_head *list,
- struct list_head *head)
- {
- struct list_head *first = list->next;
- struct list_head *last = list->prev;
- struct list_head *at = head->next;
- first->prev = head;
- head->next = first;
- last->next = at;
- at->prev = last;
- }
- /**
- * list_splice - join two lists
- * @list: the new list to add.
- * @head: the place to add it in the first list.
- */
- static inline void list_splice(struct list_head *list, struct list_head *head)
- {
- if (!list_empty(list))
- __list_splice(list, head);
- }
- #endif // __C_LIST_H2 x8 P5 P, R. {6 t
; \" T" |0 p& d/ X
- ?! e" b3 _$ z0 q/ r
list_head通常是嵌在数据结构内使用,在上文的实作中我们还是以整数链表为例,int_node的定义如下:9 \0 A; |" q/ ^7 z
, \4 c& |9 O# n" S- Z
- struct int_node {
- int val;
- struct list_head list;
- };
3 |3 N3 @+ d) Y# q% z: p# P# _ & k1 a. i& c2 b- i E: \
; e; H1 w( d" |( t使用list_head组织的链表的结构如下图所示:
% T( M9 d6 B! {% P. R- H. B: ?3 c& ]9 f. A; _
' W8 e6 t3 D, B2 A3 c" X$ X! w# J- }# u
* H# h- `# Y0 j4 ^: Q- X
遍历链表是用宏list_for_each来完成。% C' o7 H$ v7 F {' S
3 m' d0 _1 o6 L3 h& x- #define list_for_each(pos, head) \
- for (pos = (head)->next; prefetch(pos->next), pos != (head); \
- pos = pos->next)$ H. w8 `0 h7 H$ O# n: M
8 `' i% o9 l" j7 v( \( @9 E/ D
1 e" U# ~% g9 [2 s在这里,pos和head均是struct list_head。在遍历的过程中如果需要访问节点,可以用list_entry来取得这个节点的基址。7 q% |. G7 k5 f
6 |( l+ c( A% g; e; a- w$ W
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member); R4 X% p0 C) p; @- @
- u1 Z& o' P* \
3 M& |5 J6 v* o+ y5 {2 a" Q我们来看看container_of是如何实现的。如下图所示,我们已经知道TYPE结构中MEMBER的地址,如果要得到这个结构体的地址,只需要知道MEMBER在结构体中的偏移量就可以了。如何得到这个偏移量地址呢?这里用到C语言的一个小技巧,我们不妨把结构体投影到地址为0的地方,那么成员的绝对地址就是偏移量。得到偏移量之后,再根据ptr指针指向的地址,就可以很容易的计算出结构体的地址。
0 j c+ l# R, f) P6 I1 ~: F5 D/ b# f9 T0 W' }" L9 b
5 H7 J6 R; @8 P# E9 o
% T& i: w, M" A& n$ z! y2 @$ U' }% A( Blist_entry就是通过上面的方法从ptr指针得到我们需要的type结构体。
+ A2 p; ~. }& u: P0 K% n: m
- r* z5 k8 r6 K& `3 R x/ FLinux内核代码博大精深,陈莉君老师曾把它形容为“覆压三百余里,隔离天日”(摘自《阿房宫赋》),可见其内容之丰富、结构之庞杂。内核里有着众多重要的数据结构,具有相关性的数据结构之间很多都是用本文介绍的链表组织在一起,看来list_head结构虽小,作用可真不小。
/ s! r1 p$ D0 R! `% Z+ a. L! ?3 P
+ {' _# N: t( Y& o$ `Linux内核是个伟大的工程,其源代码里还有很多精妙之处,值得C/C++程序员认真去阅读,即使我们不去做内核相关的工作,阅读精彩的代码对程序员自我修养的提高也是大有裨益的。
. Y C) q" B, A2 A& q" {* Y! @. R: d% Z5 J* V! }% S
|
|