找回密码
 注册
关于网站域名变更的通知
查看: 533|回复: 2
打印 上一主题 下一主题

基于matlab粒子群优化灰狼算法

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2021-3-10 17:29 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 uperrua 于 2021-3-10 17:39 编辑 0 E$ h" ^1 N9 B6 C/ g

4 J( q9 E' v: _  L/ V1 v  Q6 Q4 m: a" M
一、简介
8 q* R% u9 r- v4 d灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一种控制参数a随机动态调整策略.此外,为了提高算法的全局收敛速度,用混沌初始化方法产生初始种群.采用18个高维测试函数进行仿真实验,结果表明:对于绝大多数情形,在相同最大适应度函数评价次数下,本文算法的性能明显优于标准灰狼优化算法.5 T& E" y1 [) I! F

. d: C. V* X0 n; @# L5 k二、源代码! k; i3 r4 s. N6 h9 j: g$ Z

# u' C& C  U$ J% G8 c
  • %%
  • clear all
  • clc
  • close all
  • SearchAgents_no=30; % Number of search agents
  • Function_name='F18'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)
  • Max_iteration=500; % Maximum numbef of iterations
  • % Load details of the selected benchmark function
  • [lb,ub,dim,fobj]=Get_Functions_details(Function_name);
  • [Best_score,Best_pos,PSOGWO_cg_curve]=PSOGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
  • [Alpha_score,Alpha_pos,GWO_cg_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
  • figure('Position',[500 500 660 290])
  • %Draw search space
  • subplot(1,2,1);
  • func_plot(Function_name);
  • title('Parameter space')
  • xlabel('x_1');
  • ylabel('x_2');
  • zlabel([Function_name,'( x_1 , x_2 )'])
  • %Draw objective space
  • subplot(1,2,2);
  • semilogy(PSOGWO_cg_curve,'Color','r')
  • hold on
  • semilogy(GWO_cg_curve,'Color','b')
  • title('Objective space')
  • xlabel('Iteration');
  • ylabel('Best score obtained so far');
  • axis tight
  • grid on
  • box on
  • legend('PSOGWO','GWO')
  • display(['The best solution obtained by PSOGWO is : ', num2str(Best_pos)]);
  • display(['The best optimal value of the objective funciton found by PSOGWO is : ', num2str(Best_score)]);
  • display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
  • display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);
  • % This function containts full information and implementations of the benchmark
  • % functions in Table 1, Table 2, and Table 3 in the paper
  • % lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
  • % up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
  • % dim is the number of variables (dimension of the problem)
  • function [lb,ub,dim,fobj] = Get_Functions_details(F)
  • switch F
  •     case 'F1'
  •         fobj = @F1;
  •         lb=-100;
  •         ub=100;
  •         dim=30;
  •     case 'F2'
  •         fobj = @F2;
  •         lb=-10;
  •         ub=10;
  •         dim=30;
  •     case 'F3'
  •         fobj = @F3;
  •         lb=-100;
  •         ub=100;
  •         dim=30;
  •     case 'F4'
  •         fobj = @F4;
  •         lb=-100;
  •         ub=100;
  •         dim=30;
  •     case 'F5'
  •         fobj = @F5;
  •         lb=-30;
  •         ub=30;
  •         dim=30;
  •     case 'F6'
  •         fobj = @F6;
  •         lb=-100;
  •         ub=100;
  •         dim=30;
  •     case 'F7'
  •         fobj = @F7;
  •         lb=-1.28;
  •         ub=1.28;
  •         dim=30;
  •     case 'F8'
  •         fobj = @F8;
  •         lb=-500;
  •         ub=500;
  •         dim=30;
  •     case 'F9'
  •         fobj = @F9;
  •         lb=-5.12;
  •         ub=5.12;
  •         dim=30;
  •     case 'F10'
  •         fobj = @F10;
  •         lb=-32;
  •         ub=32;
  •         dim=30;
  •     case 'F11'
  •         fobj = @F11;
  •         lb=-600;
  •         ub=600;
  •         dim=30;
  •     case 'F12'
  •         fobj = @F12;
  •         lb=-50;
  •         ub=50;
  •         dim=30;
  •     case 'F13'
  •         fobj = @F13;
  •         lb=-50;
  •         ub=50;
  •         dim=30;
  •     case 'F14'
  •         fobj = @F14;
  •         lb=-65.536;
  •         ub=65.536;
  •         dim=2;
  •     case 'F15'
  •         fobj = @F15;
  •         lb=-5;
  •         ub=5;
  •         dim=4;
  •     case 'F16'
  •         fobj = @F16;
  •         lb=-5;
  •         ub=5;
  •         dim=2;
  •     case 'F17'
  •         fobj = @F17;
  •         lb=[-5,0];
  •         ub=[10,15];
  •         dim=2;
  •     case 'F18'
  •         fobj = @F18;
  •         lb=-2;
  •         ub=2;
  •         dim=2;
  •     case 'F19'
  •         fobj = @F19;
  •         lb=0;
  •         ub=1;
  •         dim=3;
  •     case 'F20'
  •         fobj = @F20;
  •         lb=0;
  •         ub=1;
  •         dim=6;
  •     case 'F21'
  •         fobj = @F21;
  •         lb=0;
  •         ub=10;
  •         dim=4;
  •     case 'F22'
  •         fobj = @F22;
  •         lb=0;
  •         ub=10;
  •         dim=4;
  •     case 'F23'
  •         fobj = @F23;
  •         lb=0;
  •         ub=10;
  •         dim=4;
  • end
  • end
  • % F1
  • function o = F1(x)
  • o=sum(x.^2);
  • end
  • % F2
  • function o = F2(x)
  • o=sum(abs(x))+prod(abs(x));
  • end
  • % F3
  • function o = F3(x)
  • dim=size(x,2);
  • o=0;
  • for i=1:dim
  •     o=o+sum(x(1:i))^2;
  • end
  • end
  • % F4
  • function o = F4(x)
  • o=max(abs(x));
  • end
  • % F5
  • function o = F5(x)
  • dim=size(x,2);
  • o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
  • end
  • % F6
  • function o = F6(x)
  • o=sum(abs((x+.5)).^2);
  • end
  • % F7
  • function o = F7(x)
  • dim=size(x,2);
  • o=sum([1:dim].*(x.^4))+rand;
  • end
  • % F8
  • function o = F8(x)
  • o=sum(-x.*sin(sqrt(abs(x))));
  • end
  • % F9
  • function o = F9(x)
  • dim=size(x,2);
  • o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
  • end
  • % F10
  • function o = F10(x)
  • dim=size(x,2);
  • o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
  • end
  • % F11
  • function o = F11(x)
  • dim=size(x,2);
  • o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
  • end
  • % F12
  • function o = F12(x)
  • dim=size(x,2);
  • o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
  • (1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
  • end
  • % F13
  • function o = F13(x)
  • dim=size(x,2);
  • o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
  • ((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
  • end
  • % F14
  • function o = F14(x)
  • aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
  • -32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
  • for j=1:25
  •     bS(j)=sum((x'-aS(:,j)).^6);
  • end
  • o=(1/500+sum(1./([1:25]+bS))).^(-1);
  • end
  • % F15
  • function o = F15(x)
  • aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
  • bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
  • o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
  • end
  • % F16
  • function o = F16(x)
  • o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
  • end
  • % F17
  • function o = F17(x)
  • o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
  • end
  • % F18
  • function o = F18(x)
  • o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
  •     (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
  • end
  • % F19
  • function o = F19(x)
  • aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
  • pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
  • o=0;
  • for i=1:4
  •     o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
  • end
  • end
  • % F20
  • function o = F20(x)
  • aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
  • cH=[1 1.2 3 3.2];
  • pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
  • .2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
  • o=0;
  • for i=1:4
  •     o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
  • end
  • end
  • % F21
  • function o = F21(x)
  • aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
  • cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
  • o=0;
  • for i=1:5
  •     o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
  • end
  • end
  • % F22
  • function o = F22(x)
  • aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
  • cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
  • o=0;
  • for i=1:7
  •     o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
  • end
  • end
  • % F23
  • function o = F23(x)
  • aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
  • cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
  • o=0;
  • for i=1:10
  •     o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
  • end
  • end
  • function o=Ufun(x,a,k,m)
  • o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
  • end
  • 7 @. N1 U, x( b) s# F
                                                              " ~7 S/ d5 C  v. m9 u

- k" R5 I8 `- ?' z1 ]1 C三、运行结果
, G+ |5 j2 i6 T$ O$ W$ ^; a+ f+ T) R  J, d/ i/ f

该用户从未签到

2#
发表于 2021-3-10 18:10 | 只看该作者
基于matlab粒子群优化灰狼算法

该用户从未签到

3#
发表于 2021-3-10 19:03 | 只看该作者
                              
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-6-15 22:48 , Processed in 0.093750 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表