|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
+ X( E# Z& Q( Q7 Y& Y, V* u8 {4 f
NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
+ |; m: T1 e J9 S/ P% P* {( H. G5 r, i
# L/ f' T" M. T/ H
) V) x& U$ b. g* V
7 L$ L' p, R s* I. C, eNSGA2的过程为:" l* b8 ~8 l3 U- V/ v( w& M
7 B: `# b& F5 a1 @/ {) \
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
7 `, c: g3 y0 c7 ~5 @! c$ c' r' |+ `6 S) U' q }9 `
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..5 u3 {8 }$ g o3 O! @
& h& x* H f# j' R3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
( r9 i7 N$ g0 K9 e' M3 m& t0 T8 U6 m' U: H2 P% Z1 x
0 K+ z) e1 |0 K$ h/ ^3 k5 U" w
4 j+ a. f! Z$ i下面是完整版的代码:# ~; O3 f$ H% w; |7 f( h6 f5 z% c
0 _$ x6 ~: ?# ~9 U1 B①nsga2-optimization.m) D6 n: U' y# s0 r
; @0 F* n' S+ G# L3 a2 F
- function nsga_2_optimization
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %此处可以更改
- %更多机器学习内容请访问omegaxyz.com
- pop = 500; %种群数量
- gen = 500; %迭代次数
- M = 2; %目标数量
- V = 30; %维度
- min_range = zeros(1, V); %下界
- max_range = ones(1,V); %上界
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- chromosome = initialize_variables(pop, M, V, min_range, max_range);
- chromosome = non_domination_sort_mod(chromosome, M, V);
- for i = 1 : gen
- pool = round(pop/2);
- tour = 2;
- parent_chromosome = tournament_selection(chromosome, pool, tour);
- mu = 20;
- mum = 20;
- offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
- [main_pop,~] = size(chromosome);
- [offspring_pop,~] = size(offspring_chromosome);
- clear temp
- intermediate_chromosome(1:main_pop,:) = chromosome;
- intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
- intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
- chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
- if ~mod(i,100)
- clc;
- fprintf('%d generations completed\n',i);
- end
- end
- if M == 2
- plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
- xlabel('f_1'); ylabel('f_2');
- title('Pareto Optimal Front');
- elseif M == 3
- plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
- xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
- title('Pareto Optimal SuRFace');
- end- v% o* f" L5 @0 e* H
. U$ I, O& Y# R+ ^( n4 @5 A# C- N; }7 x$ d8 s
②initialize_variables.m
/ D v% q) F- b! S: G
/ w' |' U! ~* v9 A' \+ s0 m* B2 y- function f = initialize_variables(N, M, V, min_range, max_range)
- min = min_range;
- max = max_range;
- K = M + V;
- for i = 1 : N
- for j = 1 : V
- f(i,j) = min(j) + (max(j) - min(j))*rand(1);
- end
- f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
- end
" q- Y, K( |3 F3 S, Z2 u
# ?/ J3 i8 M, g
; ?; h$ @9 k& _+ k% j③non_domination_sort_mod.m
# ]% k, Z3 X! f7 s E
) e0 {8 h; b0 E1 |- i K- function f = non_domination_sort_mod(x, M, V)
- [N, ~] = size(x);
- clear m
- front = 1;
- F(front).f = [];
- individual = [];
- for i = 1 : N
- individual(i).n = 0;
- individual(i).p = [];
- for j = 1 : N
- dom_less = 0;
- dom_equal = 0;
- dom_more = 0;
- for k = 1 : M
- if (x(i,V + k) < x(j,V + k))
- dom_less = dom_less + 1;
- elseif (x(i,V + k) == x(j,V + k))
- dom_equal = dom_equal + 1;
- else
- dom_more = dom_more + 1;
- end
- end
- if dom_less == 0 && dom_equal ~= M
- individual(i).n = individual(i).n + 1;
- elseif dom_more == 0 && dom_equal ~= M
- individual(i).p = [individual(i).p j];
- end
- end
- if individual(i).n == 0
- x(i,M + V + 1) = 1;
- F(front).f = [F(front).f i];
- end
- end
- while ~isempty(F(front).f)
- Q = [];
- for i = 1 : length(F(front).f)
- if ~isempty(individual(F(front).f(i)).p)
- for j = 1 : length(individual(F(front).f(i)).p)
- individual(individual(F(front).f(i)).p(j)).n = ...
- individual(individual(F(front).f(i)).p(j)).n - 1;
- if individual(individual(F(front).f(i)).p(j)).n == 0
- x(individual(F(front).f(i)).p(j),M + V + 1) = ...
- front + 1;
- Q = [Q individual(F(front).f(i)).p(j)];
- end
- end
- end
- end
- front = front + 1;
- F(front).f = Q;
- end
- [temp,index_of_fronts] = sort(x(:,M + V + 1));
- for i = 1 : length(index_of_fronts)
- sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
- end
- current_index = 0;
- %% Crowding distance
- for front = 1 : (length(F) - 1)
- distance = 0;
- y = [];
- previous_index = current_index + 1;
- for i = 1 : length(F(front).f)
- y(i,:) = sorted_based_on_front(current_index + i,:);
- end
- current_index = current_index + i;
- sorted_based_on_objective = [];
- for i = 1 : M
- [sorted_based_on_objective, index_of_objectives] = ...
- sort(y(:,V + i));
- sorted_based_on_objective = [];
- for j = 1 : length(index_of_objectives)
- sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
- end
- f_max = ...
- sorted_based_on_objective(length(index_of_objectives), V + i);
- f_min = sorted_based_on_objective(1, V + i);
- y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
- = Inf;
- y(index_of_objectives(1),M + V + 1 + i) = Inf;
- for j = 2 : length(index_of_objectives) - 1
- next_obj = sorted_based_on_objective(j + 1,V + i);
- previous_obj = sorted_based_on_objective(j - 1,V + i);
- if (f_max - f_min == 0)
- y(index_of_objectives(j),M + V + 1 + i) = Inf;
- else
- y(index_of_objectives(j),M + V + 1 + i) = ...
- (next_obj - previous_obj)/(f_max - f_min);
- end
- end
- end
- distance = [];
- distance(:,1) = zeros(length(F(front).f),1);
- for i = 1 : M
- distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
- end
- y(:,M + V + 2) = distance;
- y = y(:,1 : M + V + 2);
- z(previous_index:current_index,:) = y;
- end
- f = z();
& @& ~$ Q' X' r; P
9 K1 g" d X) R) I
' Z! U9 \1 o2 m8 h5 T ④tournament_selection.m
0 P4 \/ k" R% X. T) k- function f = tournament_selection(chromosome, pool_size, tour_size)
- [pop, variables] = size(chromosome);
- rank = variables - 1;
- distance = variables;
- for i = 1 : pool_size
- for j = 1 : tour_size
- candidate(j) = round(pop*rand(1));
- if candidate(j) == 0
- candidate(j) = 1;
- end
- if j > 1
- while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
- candidate(j) = round(pop*rand(1));
- if candidate(j) == 0
- candidate(j) = 1;
- end
- end
- end
- end
- for j = 1 : tour_size
- c_obj_rank(j) = chromosome(candidate(j),rank);
- c_obj_distance(j) = chromosome(candidate(j),distance);
- end
- min_candidate = ...
- find(c_obj_rank == min(c_obj_rank));
- if length(min_candidate) ~= 1
- max_candidate = ...
- find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
- if length(max_candidate) ~= 1
- max_candidate = max_candidate(1);
- end
- f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
- else
- f(i,:) = chromosome(candidate(min_candidate(1)),:);
- end
- end0 q9 f1 H$ i- w
$ e# l+ N% v" d7 k! P6 Y+ p4 n% ~4 n7 _7 F, o9 o$ C
⑤genetic_operator.m
" [, P) ^% D% B- a& a/ d& F4 l- p
- function f = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
- [N,m] = size(parent_chromosome);
- clear m
- p = 1;
- was_crossover = 0;
- was_mutation = 0;
- for i = 1 : N
- % With 90 % probability perform crossover
- if rand(1) < 0.9
- % Initialize the children to be null vector.
- child_1 = [];
- child_2 = [];
- % Select the first parent
- parent_1 = round(N*rand(1));
- if parent_1 < 1
- parent_1 = 1;
- end
- % Select the second parent
- parent_2 = round(N*rand(1));
- if parent_2 < 1
- parent_2 = 1;
- end
- % Make sure both the parents are not the same.
- while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
- parent_2 = round(N*rand(1));
- if parent_2 < 1
- parent_2 = 1;
- end
- end
- % Get the chromosome information for each randomnly selected
- % parents
- parent_1 = parent_chromosome(parent_1,:);
- parent_2 = parent_chromosome(parent_2,:);
- % Perform corssover for each decision variable in the chromosome.
- for j = 1 : V
- % SBX (Simulated Binary Crossover).
- % For more information about SBX refer the enclosed pdf file.
- % Generate a random number
- u(j) = rand(1);
- if u(j) <= 0.5
- bq(j) = (2*u(j))^(1/(mu+1));
- else
- bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
- end
- % Generate the jth element of first child
- child_1(j) = ...
- 0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
- % Generate the jth element of second child
- child_2(j) = ...
- 0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
- % Make sure that the generated element is within the specified
- % decision space else set it to the appropriate extrema.
- if child_1(j) > u_limit(j)
- child_1(j) = u_limit(j);
- elseif child_1(j) < l_limit(j)
- child_1(j) = l_limit(j);
- end
- if child_2(j) > u_limit(j)
- child_2(j) = u_limit(j);
- elseif child_2(j) < l_limit(j)
- child_2(j) = l_limit(j);
- end
- end
- child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
- child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
- was_crossover = 1;
- was_mutation = 0;
- % With 10 % probability perform mutation. Mutation is based on
- % polynomial mutation.
- else
- % Select at random the parent.
- parent_3 = round(N*rand(1));
- if parent_3 < 1
- parent_3 = 1;
- end
- % Get the chromosome information for the randomnly selected parent.
- child_3 = parent_chromosome(parent_3,:);
- % Perform mutation on eact element of the selected parent.
- for j = 1 : V
- r(j) = rand(1);
- if r(j) < 0.5
- delta(j) = (2*r(j))^(1/(mum+1)) - 1;
- else
- delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
- end
- % Generate the corresponding child element.
- child_3(j) = child_3(j) + delta(j);
- % Make sure that the generated element is within the decision
- % space.
- if child_3(j) > u_limit(j)
- child_3(j) = u_limit(j);
- elseif child_3(j) < l_limit(j)
- child_3(j) = l_limit(j);
- end
- end
- child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
- % Set the mutation flag
- was_mutation = 1;
- was_crossover = 0;
- end
- if was_crossover
- child(p,:) = child_1;
- child(p+1,:) = child_2;
- was_cossover = 0;
- p = p + 2;
- elseif was_mutation
- child(p,:) = child_3(1,1 : M + V);
- was_mutation = 0;
- p = p + 1;
- end
- end
- f = child;6 I/ n$ ?) H: ]1 S% V8 q9 |
4 F2 I- o1 u8 t& s( m! p. q- X' Y
⑥replace_chromosome.m9 x. C8 m7 U8 j- u+ X$ @6 b: Q
( D8 u1 S8 q' M" M {- function f = replace_chromosome(intermediate_chromosome, M, V,pop)
- [N, m] = size(intermediate_chromosome);
- % Get the index for the population sort based on the rank
- [temp,index] = sort(intermediate_chromosome(:,M + V + 1));
- clear temp m
- % Now sort the individuals based on the index
- for i = 1 : N
- sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);
- end
- % Find the maximum rank in the current population
- max_rank = max(intermediate_chromosome(:,M + V + 1));
- % Start adding each front based on rank and crowing distance until the
- % whole population is filled.
- previous_index = 0;
- for i = 1 : max_rank
- % Get the index for current rank i.e the last the last element in the
- % sorted_chromosome with rank i.
- current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
- % Check to see if the population is filled if all the individuals with
- % rank i is added to the population.
- if current_index > pop
- % If so then find the number of individuals with in with current
- % rank i.
- remaining = pop - previous_index;
- % Get information about the individuals in the current rank i.
- temp_pop = ...
- sorted_chromosome(previous_index + 1 : current_index, :);
- % Sort the individuals with rank i in the descending order based on
- % the crowding distance.
- [temp_sort,temp_sort_index] = ...
- sort(temp_pop(:, M + V + 2),'descend');
- % Start filling individuals into the population in descending order
- % until the population is filled.
- for j = 1 : remaining
- f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
- end
- return;
- elseif current_index < pop
- % Add all the individuals with rank i into the population.
- f(previous_index + 1 : current_index, :) = ...
- sorted_chromosome(previous_index + 1 : current_index, :);
- else
- % Add all the individuals with rank i into the population.
- f(previous_index + 1 : current_index, :) = ...
- sorted_chromosome(previous_index + 1 : current_index, :);
- return;
- end
- % Get the index for the last added individual.
- previous_index = current_index;
- end
' |) }- p( h" K! L3 b6 n5 T' k7 a
' s8 g. [! }) H& X
5 l( `( j6 t' u% M ⑦自定义评价函数(我选用的ZDT1函数)* e# w9 v. p* p! Y5 g: m p+ t0 b
) K& I6 L( ^" f% b
- function f = evaluate_objective(x, M, V)
- f = [];
- f(1) = x(1);
- g = 1;
- sum = 0;
- for i = 2:V
- sum = sum + x(i);
- end
- g = g + 9*sum / (V-1));
- f(2) = g * (1 - sqrt(x(1) / g));
- end% a! y- t f( o o: t3 t# n; {
5 M2 b( Z! @3 r" O$ V2 ?
9 e0 k" l( C4 a8 S3 h5 x& F; E6 ]500个种群运行500代的结果:
1 a Y4 G) A% y: p* J9 o1 E% b0 {% A; G* G
9 [" I5 Y* T5 X" n W, L3 P% O2 O9 j9 H
3 i& b+ y) |. ~- i d6 |
! _8 v1 v/ `" q& o8 T: t
# }" [4 M, R+ X: T6 O6 k
|
|