|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Table of Contents
( q3 t; b0 Z) h* D) n; n0 N5 UAudience ............................................................................................. iii
% X) x1 L' V# I" `) WRelated Documents ............................................................................. iii0 ^: I( {1 W( a; D! h3 ^$ ^
Conventions ........................................................................................ iv
' x) ^8 U6 ^2 }! l% s8 P6 |+ ZObtaining Customer Support .............................................................. vi! _- I% Y$ W. `+ |6 ^
Other Sources of Information ............................................................ vii
, e0 y3 d0 D/ ^- p* {Revision History ............................................................................... viii8 r# H* F5 a( h& w# D9 _6 t
Chapter 1 - Overview of Models ..................................................................... 1-1* v; b. P2 z8 q( k
Using Models to Define Netlist Elements .............................................. 1-27 M7 T# y' I B, P
Supported Models for Specific Simulators ....................................... 1-2
9 s' h0 Q1 m& W$ g" uSelecting Models .............................................................................. 1-3( H* t; t; n) n
Example ............................................................................................ 1-3
; |3 K, l- n6 F6 u5 PChapter 2 - Using Passive Device Models....................................................... 2-19 V3 w% B/ Y7 q4 X
Resistor Device Model and Equations .................................................... 2-2; y8 M* N" X/ A$ g3 D3 M" L) h+ r
Wire RC Model ................................................................................. 2-2
4 e+ f% m3 o/ ^ UResistor Model Equations ................................................................. 2-5
8 w3 T5 s+ O! X1 E$ i. B. _Capacitor Device Model and Equations ............................................... 2-10
0 z* G/ R3 L- F2 D! U- z0 Y( DCapacitance Model ......................................................................... 2-105 b1 R$ e' N0 J, V9 X
Capacitor Device Equations ........................................................... 2-11
1 l5 G6 I+ k, d6 H, w9 T% b5 n8 AInductor Device Model and Equations ................................................. 2-14
0 @5 g* X. d4 {$ p* g$ a/ B' @1 EInductor Core Models ..................................................................... 2-15+ ]' v3 K f8 ?9 O
Magnetic Core Element Outputs .................................................... 2-18
1 W5 T9 E: S# r2 c0 _1 \7 V; LInductor Device Equations ............................................................. 2-19" h. S) G* U) v! @- \. J3 d
Jiles-Atherton Ferromagnetic Core Model ..................................... 2-21# L/ q) O! u4 K' @8 z% P
Power Sources ....................................................................................... 2-30
5 h! M1 Y+ m. \8 KIndependent Sources ....................................................................... 2-30
# e. d% A7 V* M& {2 d! _Controlled Sources .......................................................................... 2-33
" j1 m9 z4 U |/ W; KChapter 3 - Using Diodes ................................................................................. 3-1, E4 [7 J: ]8 w1 R, @5 Y9 Y, P
Diode Types ............................................................................................ 3-2
2 r& c# O! O, J2 t6 T5 H. W: \Using Diode Model Statements .............................................................. 3-3
6 V3 K. k e# v; xSetting Control Options .................................................................... 3-3
! }1 |: J" w: f* k# O- uSpecifying Junction Diode Models ......................................................... 3-5
' G) u3 Y# v- ?# s8 C, GUsing the Junction Model Statement ................................................ 3-65 G! P. P4 v! f; ~+ } @3 [% J
Using Junction Model Parameters .................................................... 3-7" O8 r5 l& r' R7 R8 t
Geometric Scaling for Diode Models ............................................. 3-13! m# d+ n+ K, G3 H: {
Defining Diode Models ................................................................... 3-15- ?* s- [7 [( y& e
Determining Temperature Effects on Junction Diodes ................... 3-18 s' B' }2 W+ B7 p7 R0 Y0 P2 [6 j9 R
Using Junction Diode Equations ........................................................... 3-21. g% l5 Q6 p u: Q' s
Using Junction DC Equations ......................................................... 3-22/ C) \# @" Z7 F- ~3 {
Using Diode Capacitance Equations ............................................... 3-25
3 Y$ G; A% C6 ~0 x3 h2 A/ F5 mUsing Noise Equations .................................................................... 3-27% f8 N, L& m* K' S: ^4 |
Temperature Compensation Equations ........................................... 3-281 K! e' A) k' }9 R9 ~5 [
Using the Junction Cap Model .............................................................. 3-32
4 z6 R/ t' o' Q! ^9 wSetting Juncap Model Parameters ................................................... 3-33- Y3 G: a: ^! b: {$ W7 p- u) h
Theory ............................................................................................. 3-33' F/ v p; i3 a6 w0 M$ l2 k) l
JUNCAP Model Equations ............................................................. 3-38* B9 ?+ h# l+ V) m0 M
Using the Fowler-Nordheim Diode ...................................................... 3-46
" ~, ]9 |! _/ g' ^Converting National Semiconductor Models ........................................ 3-48
- @ J0 A+ U0 uChapter 4 - Using BJT Models ........................................................................ 4-1& Y% a: B! h+ s& e7 m% f
Using BJT Models .................................................................................. 4-2
' u' ^1 _; v4 @& \; d$ F# mSelecting Models ............................................................................... 4-2
& F" I2 N( \" HBJT Model Statement ............................................................................. 4-4) L6 \" h' C# w% S" C
Using BJT Basic Model Parameters ................................................. 4-55 @; A& n' y" ^) M% l+ t
Handling BJT Model Temperature Effects ..................................... 4-153 k8 r& m( ] v! `
BJT Device Equivalent Circuits ............................................................ 4-21! J4 K* Q+ g: E, z
Scaling ............................................................................................. 4-21' b# J$ c3 S+ N" a
Understanding the BJT Current Convention ................................... 4-210 E8 S& r$ M' F7 e/ W/ a- `3 H
Using BJT Equivalent Circuits ....................................................... 4-22 x6 U% ~3 k# {) r7 ~% q
BJT Model Equations (NPN and PNP) ................................................. 4-30
. d! ]7 m4 Y' ~- OUnderstanding Transistor Geometry in Substrate Diodes .............. 4-308 g& O: u. Y0 l
Using DC Model Equations ............................................................ 4-32; B8 L2 `7 ^. N8 D6 T0 q6 x7 v
Using Substrate Current Equations ................................................. 4-338 ~5 N$ i9 g- c% K, `
Using Base Charge Equations ......................................................... 4-34& |7 H& u0 V8 v9 s s9 H
Using Variable Base Resistance Equations .................................... 4-358 G" U! H( c, [5 L8 I- e
Using BJT Capacitance Equations ........................................................ 4-36& Q- O3 n' m+ u
Using Base-Emitter Capacitance Equations ................................... 4-36; {# k2 Y- |7 w2 t
Determining Base Collector Capacitance ....................................... 4-38+ a8 n, X& D/ V/ C2 M
Using Substrate Capacitance ........................................................... 4-40
2 h( p# s5 a" {Defining BJT Noise Equations ............................................................. 4-42) p7 N6 B7 \4 \( ^& s" V3 f
BJT Temperature Compensation Equations ......................................... 4-44
. u' {* _' j7 aUsing Energy Gap Temperature Equations .................................... 4-44, e7 t; j- Q P* a& `
Saturation and Beta Temperature Equations, TLEV=0 or 2 ........... 4-44# M1 E3 x4 |) q& K5 ?
Using Saturation and Temperature Equations, TLEV=1 ................ 4-46
5 h& b$ H$ C3 F0 S' s% U, fUsing Saturation Temperature Equations, TLEV=3 ....................... 4-47' o8 Y1 K" f7 _5 r* e7 d5 z
Using Capacitance Temperature Equations .................................... 4-49( l- j/ c8 G9 |" T
Parasitic Resistor Temperature Equations ...................................... 4-51
! e- `" ^1 x. @5 w: L4 [9 t* YUsing BJT Level=2 Temperature Equations .................................. 4-522 }* Y! Y4 J* g5 B1 N
BJT Quasi-Saturation Model ................................................................ 4-53; }, O% ^/ k# q0 S
Using Epitaxial Current Source Iepi ............................................... 4-55( Y- r1 `8 ^# C. y0 z
Epitaxial Charge Storage Elements Ci and Cx ............................... 4-55
; p8 d6 P4 A8 d0 p! Q! ZConverting National Semiconductor Models ........................................ 4-58
0 I, |$ G6 C6 M) qVBIC Bipolar Transistor Model ........................................................... 4-607 K: W0 ~% g2 c
Understanding the History of VBIC ............................................... 4-60
8 F. o: W8 `! f+ O1 b0 U8 mVBIC Parameters ............................................................................ 4-61
) e+ e! p9 k% ]Noise Analysis ................................................................................ 4-62
6 l- M+ h* M2 G/ r( MLevel 6 Philips Bipolar Model (MEXTRAM Level 503) ..................... 4-71
v* v1 z% R" @3 I4 JLevel 6 Element Syntax .................................................................. 4-71
! B, H0 u/ }' E7 L; N' B- uLevel 6 Model Parameters .............................................................. 4-72
3 `' c- s' z1 z. Y! R; o. m( dLevel 6 Philips Bipolar Model (MEXTRAM Level 504) ..................... 4-788 U. _( A) Z; w0 C- ~
Notes ............................................................................................... 4-79
. z7 L+ U3 ]* t2 [, Q9 jLevel 6 Model Parameters (504) ..................................................... 4-80; u9 |- H4 r, U, G0 W
Level 8 HiCUM Model ......................................................................... 4-946 q" Z3 O- ?4 ^( `2 a7 o# p0 d
What is the HiCUM Model? ........................................................... 4-94( b' `8 c! T6 F% ]8 G K! i
HiCUM Model Advantages ............................................................ 4-94
: s6 j" r* \# \. c- N! Y* qAvant! HiCUM Model vs. Public HiCUM Model .......................... 4-96
- W" F6 k7 `, Y) b0 V/ vModel Implementation .................................................................... 4-96% |: L% A, I/ q& s, A' x
Internal Transistors ......................................................................... 4-97
$ s+ ^! ~; [' nLevel 9 VBIC99 Model ...................................................................... 4-110
8 F7 K) C& q! F1 Z1 s, C- v% v7 uElement Syntax of BJT Level 9 .................................................... 4-110
0 P: u+ U" Q8 N0 B& ?- q2 I1 e: qEffects of VBIC99 ........................................................................ 4-1128 S' M1 ~* `/ P4 q6 L+ ~" S Q) W, C: j
Model Implementation .................................................................. 4-112
1 L- o) n: S( Q/ p% P0 _Example ........................................................................................ 4-119) l( E* M# r/ F) a
VBIC99 Notes for HSPICE Users ................................................ 4-123* L+ E( @7 @7 m+ O
Level 10 Phillips MODELLA Bipolar Model .................................... 4-124
8 I! h1 H4 \' p& yModel Parameters ......................................................................... 4-124
# g2 G+ \6 [0 P6 C$ I6 z/ d4 Q: pEquivalent Circuits ........................................................................ 4-1292 v% @8 _# W. B8 _8 L$ y8 p) b
DC Operating Point Output .......................................................... 4-131$ Z: j( k) F* X, Y9 S! W4 j
Model Equations ........................................................................... 4-132! H# | |0 D6 h4 ]' |
Temperature Dependence of the Parameters ................................ 4-142
V/ p" K5 m6 {3 }- bLevel 11 UCSD HBT Model .............................................................. 4-146
6 ?6 `3 b ^5 p8 J6 zUsing the UCSD HBT Model ....................................................... 4-1461 j( ^( ?# w% t- @$ ]+ d
Description of Parameters ............................................................. 4-147
; L: M! `( H6 wModel Equations ........................................................................... 4-152; T. @4 m J' {6 D3 v: t2 A
Equivalent Circuit ......................................................................... 4-163
) X* _/ g9 ?0 C+ y9 R- [ WExample Avant! True-Hspice Model Statement ........................... 4-165( [& W5 M S. V& Q
Chapter 5 - Using JFET and MESFET Models............................................. 5-17 D' [0 g5 @7 @* r$ A4 B! \* {* i
Understanding JFETs .............................................................................. 5-2
* s# B" f$ \: {$ V* A; G- lSpecifying a Model ................................................................................. 5-3
' l4 D- t+ z6 H! p PUnderstanding the Capacitor Model ....................................................... 5-5
+ s; ]# @) E U1 i" [Model Applications ........................................................................... 5-5
( F" J4 _5 L5 d: NControl Options ................................................................................. 5-6
- B) u% y# K* x: IJFET and MESFET Equivalent Circuits ................................................. 5-7
7 U6 W6 E* o2 f, sScaling ............................................................................................... 5-7
8 Y2 L" n0 | EUnderstanding JFET Current Convention ........................................ 5-7
; a# U! s) U8 p7 r% ?7 TJFET Equivalent Circuits .................................................................. 5-8# F* ` h; @' D ?( `; p
JFET and MESFET Model Statements ................................................. 5-13
$ T' o' m* b {1 YJFET and MESFET Model Parameters ........................................... 5-13
/ s: S6 v. r( Y |: {0 o& T. vGate Diode DC Parameters ............................................................. 5-15
" y+ Y; z0 q1 D; s+ G/ WJFET and MESFET Capacitances ................................................... 5-258 W. {0 J# P8 w2 `7 V
Capacitance Comparison (CAPOP=1 and CAPOP=2) ................... 5-29
& r* I) |. E% PJFET and MESFET DC Equations ................................................. 5-31
8 x5 |' F6 c8 D2 |9 XJFET and MESFET Noise Models ....................................................... 5-359 l K5 K0 B D5 e, @: y9 i
Noise Parameters ........................................................................... 5-35
& S+ p+ C. E8 \& [$ o9 r' J& H; nNoise Equations .............................................................................. 5-35
5 k& Y% G( i' W5 Y* t$ jNoise Summary Printout Definitions .............................................. 5-363 i( e. E4 R1 j& e4 a: D1 T# |
JFET and MESFET Temperature Equations ........................................ 5-37
; W( q" y5 f! ~2 E2 w) jTemperature Compensation Equations ........................................... 5-40* Z0 H; M I% p% A0 d; D* U; R
。。。。。。。。。。。
7 M1 B" X# o2 Q8 t$ ?6 f; }0 t" M' }1 X6 L+ \$ Y y! P
9 k% i$ I, z. [9 r. y1 h8 p& a( H |
|