|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
9 k: C5 _5 ]$ i- ?7 E/ |
norm
5 D# o: G; [2 W* O% O& `Vector and matrix norms
8 |/ W1 D$ e) d5 D" k) G9 @
8 [1 R2 k! d( _* \. ?- {1 }0 \Syntax
/ _$ l, f4 i0 k: ~. X' t7 l; a9 T3 x! G
n = norm(v)5 ~+ M, O0 b; T
! z! c8 C9 w0 b2 s
n = norm(v,p); R' F/ X/ a q1 q% j8 i3 }) V
$ G7 }6 v) i n: j' Gn = norm(X)5 H8 o/ L- C7 B; ~2 e
2 f' Q+ l( m. ^- r" J5 V
n = norm(X,p)" I; z$ C0 X: \$ U$ u a7 ^$ z
8 A6 A1 J1 @* rn = norm(X,'fro'), ]# l) @+ M1 ~# i* p: u/ O f
& c4 O1 [/ B8 g% KDescription& N7 `9 P: H+ @' x7 _6 I+ G4 h3 c( M# G+ d
3 J1 {* ]. Z' H- [. j* `! d7 L
n = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。
" z" F+ f- c7 p, I: w$ x6 R
~/ q5 h! T6 M+ yn = norm(v,p)返回广义向量p范数。
4 T9 e: V7 _" m( ^! a; b& |- G; L! l; f% \% _+ U3 d0 R* N
n = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。, p( h8 \+ s9 K; o$ r1 Z# h3 M! h% S0 d
q8 K+ b0 M- c( S& c
n = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:
2 v2 c; p2 |( E
8 E0 m3 y- }; I) J3 R- E- 如果p = 1,则n是矩阵的最大绝对列和。
- 如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。
- 如果p = Inf,那么n是矩阵的最大绝对行和。
V( Q5 d" T6 U, D7 b
2 Q. S! b. ]" f/ R ln = norm(X,'fro')返回矩阵X的Frobenius范数。
! _1 Q ]+ `$ M; Y+ ]- X: H( j" \2 J4 \+ h# w
有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识
- W3 T2 U0 u# W6 U: l
# I: ]$ a0 T7 r下面举例说明:
% s Z+ ]4 J2 ^+ d5 u( e5 f* J
8 _( x- V1 |( R# I) t" ~Vector Magnitude(向量幅度)
) d5 E) e+ G; A" Y) V# d" W, p; O2 ~+ n7 q$ ~; Q" y
- %Create a vector and calculate the magnitude.
- v = [1 -2 3];
- n = norm(v)
- % n = 3.7417
$ Y* l4 _6 k Y% `1 m. k4 f 9 F* ]3 C: H# {) x+ R# l
' L9 ~1 Q5 U/ m1-Norm of Vector7 F- L% I. L' p- v' E$ ~2 f* O& P
# q. e9 n+ G8 X2 t5 D! g
- clc
- clear
- close all
- % Calculate the 1-norm of a vector, which is the sum of the element magnitudes.
- X = [-2 3 -1];
- n = norm(X,1)
- % n = 6 B: f! X4 ^4 b$ M
5 y8 w0 n. J$ R9 Z+ r, WEuclidean Distance Between Two Points
+ y0 L* F/ M, ?4 S+ a$ u3 `
" P1 d) u$ m1 L" r# v, C& W- clc
- clear
- close all
- % Calculate the distance between two points as the norm of the difference between the vector elements.
- %
- % Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.
- a = [0 3];
- b = [-2 1];
- % Use norm to calculate the distance between the points.
- d = norm(b-a)3 }! X1 C6 H% U9 q8 J4 k3 E+ s6 \
7 F% G2 p6 d1 Nd =; ~( d+ J6 n( o% I
/ w. b9 e* ~3 l/ d8 l 2.82845 H* u3 }$ j1 m. Z
) d' I3 w$ P3 r2 q4 R
几何上,两点之间的距离:
' k( p) E& Z; v3 R. b) T+ i
& m* u2 ?) r. x& J. v# l5 {6 M ]# D
% B6 V) e/ a/ n- I( U2 W
* c) N# I0 }' Z: k' R% T% T9 `" W+ n0 H N# ?0 I) Q7 @
2-Norm of Matrix! D+ P) G' k2 u# U( p* S
* v6 D4 h j: ?8 R/ n+ o
- clc
- clear
- close all
- % Calculate the 2-norm of a matrix, which is the largest singular value.
- X = [2 0 1;-1 1 0;-3 3 0];
- n = norm(X)
- % n = 4.7234$ y0 K* Q( `* D% i
7 u+ s I4 C( ^& h
Frobenius Norm of Sparse Matrix
7 k9 y" ^- c+ g3 _$ g5 i0 u2 B0 n) S3 D$ l$ W3 O
9 [0 I. b# j5 ^) N) H% G* Q S
- clc
- clear
- close all
- % 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。
- S = sparse(1:25,1:25,1);
- n = norm(S,'fro')
- % n = 5
, o$ o [% R e% ~/ |0 S
! ^9 L/ A+ K! l. U& G; J+ V- J8 J) a0 r, f6 b" c, p1 b, g$ s+ j
- X/ O& t/ P) K: K9 e |
|