EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 mytomorrow 于 2019-12-10 10:08 编辑 ) x4 @- X5 z& N& S: U
$ {; C9 Q, y7 L目录 ifft Syntax Description
- K! V! \* ]( B, f7 t; H
$ F- F! B6 v E; G; }/ C
ifft / P. C& `& \9 Z
Inverse fast Fourier transform
% W" w. J; R: h. D9 k! k' i
5 Q' @1 n, N) Q/ U- K/ Z0 r1 X9 e' `7 ~1 d
Syntax
* O$ V% f$ B X3 l
X = ifft(Y)
: ~; |( T$ S4 m1 Q' s
X = ifft(Y,n) & ^. w* \7 i4 N$ d
X = ifft(Y,n,dim) $ C0 [* T, A* X4 ]
X = ifft(___,symflag)
9 D5 ]: P8 o" w# V( G' Y
* @7 a4 D, E1 m: V% {# U7 O
Description ; q* ]' Q8 V6 X6 ~: s
X = ifft(Y) ( t5 j8 K1 ?3 B$ K
X = ifft(Y) computes the inverse discrete Fourier transform of Y using a fast Fourier transform algorithm. X is the same size as Y. & P: ~9 x- W; K" l+ Q1 w/ ^3 g# I
- If Y is a vector, then ifft(Y) returns the inverse transform of the vector.
* f3 a' f3 S( N3 I% H9 q' x2 \- k* k" H) _
+ l% H; G2 z t' k
- If Y is a matrix, then ifft(Y) returns the inverse transform of each column of the matrix.
0 s) }# w; c( o ^% @
% z, N5 X0 g3 E) Z7 J
- If Y is a multidimensional array, then ifft(Y) treats the values along the first dimension whose size does not equal 1 as vectors and returns the inverse transform of each vector.
* h# b/ ~6 t6 S$ l
2 `6 w* n: V; K3 O$ {
本想翻译一下的,但是手册里面的英文描述的太清晰了,单词也很简单,所以就这样直接看吧。
/ F( _3 ]' ~+ Z8 E: Y* a b3 c7 ~
X = ifft(Y,n) returns the n-point inverse Fourier transform of Y by padding Y with trailing zeros to length n. 9 I- i- A! s" I. u# `
X = ifft(Y,n,dim) returns the inverse Fourier transform along the dimension dim. For example, if Y is a matrix, then ifft(Y,n,2) returns the n-point inverse transform of each row. ( O B1 `5 h* q5 K. @: D- O
X = ifft(Y,n,dim)沿维度dim返回逆傅立叶变换。 例如,如果Y是矩阵,则ifft(Y,n,2)返回每行的n点逆变换。
$ \7 r3 `; }% A( o
X = ifft(___,symflag) specifies the symmetry of Y. For example, ifft(Y,'symmetric') treats Y as conjugate symmetric. 5 v$ ?9 I$ @1 w; k2 u' ?$ c
X = ifft(___,symflag)指定Y的对称性。例如,ifft(Y,'symmetric')将Y视为共轭对称。
& g5 s7 W6 o# m- F2 b4 L Y3 q
7 [3 q) i9 y% d1 [3 G$ G( z - V( M+ J- }! j
8 P) E6 z/ u, O7 d |