|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
; v$ Q) ~; N0 S. I5 ~ n7 {
; R9 l0 f4 \ p( h" s
8 X8 j+ f5 b8 n0 ]% M0 ^4 |为了满足IS95/3GPP扩频标准中规定的严格的线性和邻信道功率抑制比(ACPR)指标,CDMA/W-CDMA无线手机需要采用高线性度的A类或AB类RF功率放大器。在较大输出功率Po=28dBm下,这类PA的功效(PAE)只有35%,输出功率较低时功效更低。语音模式下,PA并非工作在连续模式。用户没有通话时,手机工作时间为50%或1/8,因此在语音模式下无需考虑手机发热问题。然而,在数据模式下,PA在数据传输结束之前始终保持连续工作状态,较低的PA效率和连续的PA工作状态会大量消耗电池能量。另外,所产生的内部功耗也会导致手机过热。
/ d. C4 U/ [ ^# {6 {, o对于早期的W-CDMA手机,为了支持高速数据传输服务,功率耗散成为一个关键问题,设计人员不得不使用较大面积改善散热条件,增强空气流通以便冷却设备,另外还要选用更大容量(尺寸更大)的电池。如果不克服上述问题,现在的手机可能依然停留在“笨重”的水平。值得庆幸的事,近几年由于CDMA/W-CDMA蜂窝电话PA功效的提高,上述问题得到了较大改进。$ S: \' N7 v" D. U
如何降低PA功耗?0 m m4 V3 d+ l1 H, W) u" e% f) R7 M
在CDMA/W-CDMA系统中,PA的RF输出功率并非始终保持在较大值,为了优化蜂窝容量(基站能够同时处理的传输量),每部手机需要控制其RF输出功率,以便基站对于每部手机保持相同的有效接收信噪比。从大多数手机在给定区域平均输出功率的概率分布看,CDMA/W-CDMA手机在郊区的平均输出功率为+10dBm,在市内的平均输出功率为+5dBm。因此,改善PA效率的目标应该定位于+5dBm至+10dBm,而不是较大输出功率。
; P+ g* n* F' j如图1所示,CDMA/W-CDMA功率放大器需要两路电源电压,VREF为内部驱动器和功放级提供偏置,VCC为驱动器和功率放大器的集电极提供偏置。通过调节这两个电压可以降低PA的电源电流
3 M0 C4 i! Q! Q. T# [! g5 t& f& U* Q' X6 D5 m
- {" u9 D! B" j% t' `/ X
降低VREF
$ y* @/ R6 I2 t/ S6 w' z当发射RF功率为零时,在VREF=3.0V、VCC=3.4V,PA本身消耗电流为100mA(典型值)。如果将VREF从3.0V降至2.9V,静态电流将降低20mA。由此可见,通过减小VREF可有效降低PA的静态电流,但要保证PA的线性指标和ACPR满足规范要求。
! j9 }8 v8 {2 [2 _如果试验数据给出了支持每级输出功率的最小VREF电压,则可利用PA的功率控制处理器动态控制VREF。如果这种方案设计过于复杂,则可简单地采用两级VREF控制结构,只需控制低功率模式(<10dBm)和高功率模式(>10dBm)。通过基带控制DAC调节VREF时,可使用具有大电流驱动的低功耗运算放大器,并配合外部增益设置。
; ~5 P% p1 i1 i. Z* F' z降低集电极偏置电压
# G$ ]1 b r: e/ b& Y在典型的手机设计中,PA的VCC直接由单节Li+电池提供,因此,VCC工作电压的范围为:3.2V至4.2V。如上所述,概率统计表明CDMA/W-CDMA的PA大多数时间工作在+5dBm至+10dBm的输出功率,在这样的功率等级下,可以在不降低PA线性指标的前提下降低PA的集电极偏置电压(VCC),以达到降低功耗的目的。试验数据表明,在降低PA集电极偏置(低至0.6V)的情况下,手机可以始终保持与基站之间的正常通信。9 c$ V8 f" P3 W3 c" T
采用专门设计的高效DC-DC降压转换器可以为PA集电极提供变化的偏置电压,转换器的输出电压利用基带处理器专用的DAC输出调节。
+ ^2 F" f# E" v) f; V7 e3 z利用DC-DC转换器控制PA功率和PAE; B% K" t' u3 D* p# k- V$ O% S
DC-DC转换器必须能够快速响应控制信号,对PA的集电极电压进行控制。通常,转换器的输出电压应该在30ms内达到其目标电压的90%,跟随基带处理器模拟控制电压的变化。转换器芯片在VCC-控制输入电压与输出电压之间提供适当的内部增益,偏置PA的集电极。这些转换器工作在较高的开关频率,以减小电感的物理尺寸。1 N; x! ~6 W9 B
在PA和电池之间连接一个DC-DC转换器会带来另外一个问题,即在低电池电压下如何保证大功率输出,为了在保证PA线性指标的前提下提供28dBm的RF功率,PA制造商建议VCC的最小电压为3.4V。为了在3.4V电压下保持35%的PAE,还需要高达530mA的PA集电极电流:
4 e( y! q6 a' f" ~- \- x28dBmRF功率:102.8mW=631mW " W* \6 o. V9 F* q& \+ X! s
所需PA功率(VCC×ICC):631mW/(PAE¤100)=1803 mW
+ Q8 c- s. N( F) J6 j( q3.4VVCC时所需PAICC:ICC=1803mW/3.4V=530mA) e8 I$ m9 E3 _$ t
要保证3.4VVCC和530mAICC,DC-DC转换器要求输入和输出电压之间有一定的裕量,如果转换器内部的p沟道MOSFET(P-FET)的导通电阻为0.4Ω,电感电阻为0.1Ω,两个元件串联后将产生:(0.4Ω+0.1Ω)×530mA=265mV的压差,当电池电压降至3.665V以下时,DC-DC转换器将无法支持3.4V的输出。
7 Z/ C' v9 C! f" Y这种情况下(电池电压低于3.665V),较好将PA的集电极直接与电池短路,以便充分利用Li+电池的能量。通常,可以利用一个并联的低导通电阻P-FET旁路电感和内部P-FET。这个旁路P-FET(内置或外置)在大功率模式下直接将电池电压接到PA的集电极(图2)。为了解决高RF功率和低电池电压问题,这种旁路措施是必需的。- y% g; `1 ?6 f* X+ @* G
: ~3 D6 ^2 C& o4 q- m# J3 f
& w* f! n, U3 n: {$ i3 z优化PAE的较佳方案是连续调节PA的集电极偏置,这种方案需要工厂校准和调试软件,以确保集电极偏置连续变化时PA具有良好的线性度和ACPR指标。另一个折衷方案是按照若干等级设置偏置电压,通常为2级或4级(图3)。例如,一个4级的偏置设置系统,VCC电压可能设置为:Vbatt、1.5V、1.0V和0.6V。该系统的整体效率接近连续控制PA集电极偏置的系统效率,对于低功率和中等功率模式,电感只需要支持低于150mA的峰值电流。
0 O# j/ T$ }+ q" g+ J5 {$ t% Y6 L4 T% B' r0 V
& t1 D" F* L6 u& b
![]()
) ~8 K7 ^ t' q: { |
|