|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
) |, s" b7 H: ?- y2 ~" V. h" C经常使用示波器的人都知道带宽被称为示波器的第一指标,也是示波器最值钱的指标。示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。那么真的了解示波器的带宽吗?下面安泰示波器维修小组分享有关示波器带宽的两三事:
2 o/ m9 V1 e6 F; ^) s- H通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。此外,还有数字带宽,触发带宽的概念。 b( O) k' B# n1 m3 Y) _
我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurment),分析(Analyse)和归档(Document)。这五大功能组成的原理框图如图1所示。
" [! S$ w" ]2 C# k: F0 Z: p+ D![]()
& {' G6 [" k: S+ J/ V, t' c6 \" p+ c+ @ 图1 数字示波器的原理框图: B% {6 n( L, |
示波器捕获部分主要是由三颗和一个组成,即放大器芯片,A/D芯片,存储器芯片和触发器电路,原理框图如下图2所示。被测信号首先经过探头和放大器及归一化后成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集存储器里送显示和测量分析处理。( |, W; e, R B( g( j- w
+ W& s+ ?( \7 C+ V
图2 示波器捕获电路原理框图% `# `& s& K; M8 [+ M; c, }
示波器放大器的典型电路如图3所示。这个电路在模拟电路的教科书上处处可见。这种放大器可以等效为RC低通滤波器如图4所示。由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。4 p9 S0 R! v9 O- I: w
n: J5 f; Q2 |( J1 D: t
图3 放大器的典型电路& B) Z4 k8 k% {/ c. Q Q
( `& ^) g/ q: X/ E8 O
图4 放大器的等效电路模型
0 @! p# A. R# T% C, a![]()
% _! q" T8 g& ~, S ; d- P/ J8 ^0 k1 @0 G( q6 d
从以上电路中我们了解到带宽f2即输出电压降低到输入电压70.7%时的频率点。根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。在示波器的datasheet上都会标明“上升时间”指标。示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。在对快沿信号测试中,需要通过该关系式来修正实际被测信号的上升时间。8 ~; v, D+ S) E) \) C$ t9 h
Measuredriseme(tr)2=(trsignal)2+(trscope)2+(trprobe)22 w% i `! H$ D# f% E5 t7 _
![]()
& {4 X( n3 T' @8 E; I9 j 示波器前端放大器幅频特性的波特图是新示波器发布的“出生证”。示波器每年需要进行校准,波特图是第一需要校准的数据。示波器波特图的测量方法如图7所示。信号源从10MHz频率开始逐渐递增发送一定幅值的正弦波送到功分器,功分器将输入的信号能量等分为二后通过等长的线缆分别送到示波器和功率计。功分器和线缆是无源器件,可以严格定标,信号源本身的幅频特性不可以作为定标仪器,需要通过功率计实测的能量来作为示波器的输入幅值的定标值。有的人会对示波器的波特图很感兴趣,直接用信号源连接到示波器来评估示波器的波特图,在带宽超过1GHz时这种方法是很不严谨的。需要用功率计来作为定标工具!
+ C% \) H: Z0 B( s* ]+ e$ k* _此外,在计量波特图时需要对示波器每个档位都进行计量,最终产生的波特图是所有档位的结果叠加在一起的。波特图的计量是需要半天时间完成的,并不是想象中那么轻松的工作。如图8所示是力科SDA9000的波特图。) B3 p& M$ |) h8 Q7 f2 Z( E
其垂直轴是-1dB/div,叠加了10mv/div、20mv/div、50mv/div、200mv/div、500mv/div、1v/div等档位的测试结果。很多时候,某些厂商恶意竞争会把他们的波特图画成-10dB/div、只有一个档位的测试结果拿给客户,并和力科提供的这种-1dB/div、各种档位叠在一起显示的结果放在一起进行对比,然后他们告诉客户,他们的波特图更平坦,更干净,甚至将力科波特图上面密密麻麻的点说成是“噪音”大。这是有点贻笑天下的。7 t! W7 a0 k/ j9 P0 g' e
![]()
* M& c; | P# a9 a- N8 a! ^图7 示波器波特图的计量方法5 k6 W1 E- D- k$ c4 Y- d, b- T5 d
5 m: p( j0 T r9 D$ |/ P5 A- T
图8 示波器实际的波特图真相2 D$ c% M Q* I# n) m% K) y! n
带宽的限制对信号的捕获会带来下面的影响:
1 S* n2 c% R4 G6 g2 X" u: m, [1、使被测信号的上升沿变缓。
1 y' S8 C3 k+ h1 W% W' ?2、使信号的频率分量减少。$ R% Z. j" L4 |
3、使信号的相位失真。那么,“对于5MHz的时钟信号,需要用多少带宽的示波器来测量”?很多人都回答的不是严谨,因为很少有工程师反问我:“这5MHz的时钟信号是方波还是正弦波,如果是方波,其上升时间是多少”。我常得到的回答是:“100MHz带宽就足够了,示波器带宽通常是被测信号频率的3-5倍,100MHz余量很大了。”图13显示了5MHz的方波信号在不同带宽时测试出的波形。其中,M1和M2是分别在6GHz和1GHz时波形,C3是带宽限制到200MHz的测试结果。图14显示在带宽限制到200MHz时测量出的5MHz的上升时间均值为本1.70357ns,而图15显示的是在6GHz带宽时的上升时间为873.87ps。这表明,对于5MHz的时钟,因为其上升时间比较快,最好用1GHz以上带宽的示波器来测量其上升时间,200MHz时其上升沿变缓;1GHz带宽和6GHz带宽对于测试800ps的上升时间结果几乎一样。
+ r8 d( t* M5 \2 a! S + m" _7 r& v. R, H6 X- V, J
图13 5MHz时钟信号在6GHz、1GHz和200MHz等不同带宽时的测试波形对比7 ]6 W% R0 p: m9 | a4 k) x
9 A, K- J# ?0 p7 I/ ~$ l7 v
图14 带宽限制到200MHz时测量5MHz时钟上升时间" [- i# q U4 b3 b( J7 a$ @
![]()
) m2 I8 d. I/ t8 n% | 图15 6GHz带宽时测量5MHz时钟上升时间. z# y7 d; G6 j& s
对于USB2.0信号的测试,需要多少带宽?对于PCI-EG2信号的测试需要多少带宽?对于测试,需要多少带宽?对于1000Base-T信号的测试,需要多少带宽?对于10Gbps的背板测试,需要多少带宽??等等,经常有人会问到这些问题,那么遇到这种问题该怎么解答的呢?掌握下面的三条规则基本就可以全面解决:* ]0 Y1 i' T; s# P5 R' c
1、首先取决于您需要测试的信号类型及您希望的测试准确度。 }& _; ~% A0 {/ }1 P! }1 O* K
2、对方波信号,最重要的因素是上升时间。任何一方波信号都可以通过傅立叶变换分解成N次的谐波能量之和。N等于多少时,被测信号的能量就接近为零?这取决于上升时间!
2 G1 G. o/ D2 l3、对串行数据信号而言,数据比特率和上升时间是最重要的两个因素。有一个非常好的评估准则是:
; R" j4 U0 `" t; X. d- n 示波器的带宽>1.8X信号比特率.在这个准则下,如果被测信号的上升时间>20%UI,那么1.8关系的带宽能捕获信号能量的99%.下面的图表给出了不同的上升时间和带宽之间的关系。
$ g5 B( C8 d% x$ p8 j2 e4 E* \& q$ z 基于上面的原则,我们就很好理解为什么有些客户会用6GHz的示波器测试100MHz的时钟,但又用6GHz的示波器测试3.125Gbps的XAUI信号。请大家忘记所谓的3-5倍这个关系,太不严谨的表达了!本文转载于安泰仪器维修中心网:* T7 {0 P1 p7 c0 q8 ?# F
/ i: u3 E+ Q2 W. K h |
|