找回密码
 注册
关于网站域名变更的通知
查看: 664|回复: 1
打印 上一主题 下一主题

SiP与SOC封装的区别

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-3-9 13:31 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
早前,苹果发布了最新的apple watch手表,里面用到SIP封装芯片,从尺寸和性能上为新手表增色不少。而芯片发展从一味追求功耗下降及性能提升(摩尔定律),转向更加务实的满足市场的需求(超越摩尔定律), SiP是实现的重要路径。 SiP从终端电子产品角度出发,不是一味关注芯片本身的性能/功耗,而是实现整个终端电子产品的轻薄短小、多功能、低功耗,在行动装臵与穿戴装臵等轻巧型产品兴起后, SiP需求日益显现。) O( I+ L3 {; M7 a) _; P& b; K! W
根据国际半导体路线组织(ITRS)的定义: SiP 为将多个具有不同功能的有源电子元件与可选无源器件,以及诸如 MEMS 或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。
# J! r7 f, y7 x4 Z2 X2 H: G, O) Y7 D/ _+ i' K( A% X3 d4 R
从架构上来讲, SiP 是将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整的功能。与 SOC(片上系统)相对应。不同的是系统级封装是采用不同芯片进行并排或叠加的封装方式,而 SOC 则是高度集成的芯片产品。7 ^) `2 }8 R. r. V

2 [/ }$ y! M# M* M4 i; y, \+ G* C" S8 T
SiP 是超越摩尔定律下的重要实现路径
2 ~$ P/ \& t5 [5 F$ s0 M众所周知的摩尔定律发展到现阶段,何去何从?行业内有两条路径:一是继续按照摩尔定律往下发展,走这条路径的产品有CPU、内存、逻辑器件等,这些产品占整个市场的 50%。另外就是超越摩尔定律的More than Moore 路线,芯片发展从一味追求功耗下降及性能提升方面,转向更加务实的满足市场的需求。这方面的产品包括了模拟/RF 器件,无源器件、电源管理器件等,大约占到了剩下的那 50%市场。
! |% U8 g- X. q  Q) h/ D- p7 I7 p
' m( [% ~( ^. d
: N) q  k+ J% h1 m针对这两条路径,分别诞生了两种产品: SoC 与 SiP。 SoC 是摩尔定律继续往下走下的产物,而 SiP 则是实现超越摩尔定律的重要路径。两者都是实现在芯片层面上实现小型化和微型化系统的产物。
1 K' a2 f+ S6 Q6 X. B. ^% ^' B( p: F, h$ x2 f- [2 {  O
) ^$ w* q  X9 R6 W3 z; c
SoC 与 SIP 是极为相似,两者均将一个包含逻辑组件、内存组件,甚至包含被动组件的系统,整合在一个单位中。 SoC 是从设计的角度出发,是将系统所需的组件高度集成到一块芯片上。 SiP 是从封装的立场出发,对不同芯片进行并排或叠加的封装方式,将多个具有不同功能的有源电子元件与可选无源器件,以及诸如 MEMS 或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件。
$ w. Y- i$ g( |2 z) E) b  i  h5 E# b5 x! ~. ~" |- G
从集成度而言,一般情况下, SoC 只集成 AP 之类的逻辑系统,而 SiP 集成了AP+mobileDDR,某种程度上说 SIP=SoC+DDR,随着将来集成度越来越高, emmc也很有可能会集成到 SiP 中。从封装发展的角度来看,因电子产品在体积、处理速度或电性特性各方面的需求考量下, SoC 曾经被确立为未来电子产品设计的关键与发展方向。但随着近年来 SoC生产成本越来越高,频频遭遇技术障碍,造成 SoC 的发展面临瓶颈,进而使 SiP 的发展越来越被业界重视。
  }& X5 S6 a# T3 z3 L& p
+ v) v3 E2 J+ P  t  Z  Q7 n& ~  R- H8 o. z
摩尔定律确保了芯片性能的不断提升。众所周知,摩尔定律是半导体行业发展的“圣经”。在硅基半导体上,每 18 个月实现晶体管的特征尺寸缩小一半,性能提升一倍。在性能提升的同时,带来成本的下降,这使得半导体厂商有足够的动力去实现半导体特征尺寸的缩小。这其中,处理器芯片和存储芯片是最遵从摩尔定律的两类芯片。以Intel 为例,每一代的产品完美地遵循摩尔定律。在芯片层面上,摩尔定律促进了性能的不断往前推进。
- t5 Z/ ]1 K+ Y# w. D1 `+ t而PCB 板并不遵从摩尔定律,是整个系统性能提升的瓶颈。与芯片规模不断缩小相对应, PCB 板这些年并没有发生太大变化。举例而言, PCB 主板的标准最小线宽从十年前就是 3 mil(大约 75 um),到今天还是 3 mil,几乎没有进步。毕竟, PCB 并不遵从摩尔定律。因为 PCB 的限制,整个系统的性能提升遇到了瓶颈。比如,由于 PCB线宽都没变化,所以处理器和内存之间的连线密度也保持不变。换句话说,在处理器和内存封装大小不大变的情况下,处理器和内存之间的连线数量不会显著变化。而内存的带宽等于内存接口位宽乘以内存接口操作频率。内存输出位宽等于处理器和内存之间的连线数量,在十年间受到 PCB 板工艺的限制一直是 64bit 没有发生变化。所以想提升内存带宽只有提高内存接口操作频率,这就限制了整个系统的性能提升。
% W! j: l; t, D3 v6 v% F2 @0 U  f" f* p( d1 ]  ]  `/ R3 m( h
SIP 是解决系统桎梏的胜负手。把多个半导体芯片和无源器件封装在同一个芯片内,组成一个系统级的芯片,而不再用 PCB 板来作为承载芯片连接之间的载体,可以解决因为 PCB 自身的先天不足带来系统性能遇到瓶颈的问题。以处理器和存储芯片举例,因为系统级封装内部走线的密度可以远高于 PCB 走线密度,从而解决 PCB线宽带来的系统瓶颈。举例而言,因为存储器芯片和处理器芯片可以通过穿孔的方式连接在一起,不再受 PCB 线宽的限制,从而可以实现数据带宽在接口带宽上的提升
5 I% l" h' l/ Q; v: h- L
* ]! M/ V, S; d9 y* z6 D9 ^7 {# h
SiP 不仅简单将芯片集成在一起。 SiP 还具有开发周期短、功能更多、功耗更低、性能更优良、成本价格更低、体积更小、质量更轻等优点,; A0 P  v1 ?6 @7 x/ o
  |& Y: e/ R8 O* L; H) b: L

该用户从未签到

2#
发表于 2020-3-9 18:17 | 只看该作者
SoC 与 SIP 是极为相似,两者均将一个包含逻辑组件、内存组件,甚至包含被动组件的系统,整合在一个单位中。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-13 20:19 , Processed in 0.109375 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表